Bounds of regular analogue of Lehmer problem
Downloads
DOI:
https://doi.org/10.26637/mjm1104/011Abstract
In this paper, we consider a new problem analogous to Lehmer's problem concerning $n$ for which $\phi(n) \mid n - 1$, where $\Phi$ is the Euler's totient function. The aim of this paper is to improve the bounds for $\omega(n)$ and $n$, where $n \in S^A$ and \(S^A = \bigcup_{M > 1} S^A_M.\)
Keywords:
Lehmer problem, Euler totient function, regular analogue of Lehmer problem- Pages: 470-476
- Date Published: 01-10-2023
- Vol. 11 No. 04 (2023): Malaya Journal of Matematik (MJM)
AHMADSABIHI, An analytical proof for Lehmer’s totient conjecture using Mertens’ theorems, http://Arxiv.orgArxiv.org, arXiv:1608.08086v1; (2016).
A. GRYTCZUK AND M. WOJTOWICZ, On a Lehmer problem concerning Euler’s totient function, Proc. Japan Acad. Ser.A, 79 (2003), 136–138.
ECKFORD COHEN, Arithmetical functions associated with the unitary divisors of an integer, Math. Zeitschr, 74(1960), 66–80.
P.J. MCCARTHY, Regular arithmetical Convolutions, Portugaliae Mathematica, 27(1968), 1–13.
W. NARKIEWICZ, On a class of arithmetical Convolutions, Colloq. Math., 10(1963), 81–94.
J. SANDOR AND B. CRISTICI, Handbook of Number Theory II, Kluwer Academic Publishers, Dortrecht/Boston/ London, 2004.
V. SIVA RAMA PRASAD. AND M. V. SUBBARAO, Regular convolutions and a related Lehmer problem, Nieuw Archief Voor Wiskunde, (4)(3)(1985), 1–18.
- NA