Bounds of regular analogue of Lehmer problem

Downloads

DOI:

https://doi.org/10.26637/mjm1104/011

Abstract

In this paper, we consider a new problem analogous to Lehmer's problem concerning $n$ for which $\phi(n) \mid n - 1$, where $\Phi$ is the Euler's totient function. The aim of this paper is to improve the bounds for $\omega(n)$ and $n$, where $n \in S^A$ and SA=M>1SMA.

Keywords:

Lehmer problem, Euler totient function, regular analogue of Lehmer problem
  • Uma Dixit Department of Mathematics, University Post Graduate College Secunderabad, Osmania University, Hyderabad-500003, Telangana, India
  • Sarada Devi Department of Mathematics, Government Degree College for Women, Begumpet, Hyderabad-500016, Telangana, India.
  • Pages: 470-476
  • Date Published: 01-10-2023
  • Vol. 11 No. 04 (2023): Malaya Journal of Matematik (MJM)

AHMADSABIHI, An analytical proof for Lehmer’s totient conjecture using Mertens’ theorems, http://Arxiv.orgArxiv.org, arXiv:1608.08086v1; (2016).

A. GRYTCZUK AND M. WOJTOWICZ, On a Lehmer problem concerning Euler’s totient function, Proc. Japan Acad. Ser.A, 79 (2003), 136–138.

ECKFORD COHEN, Arithmetical functions associated with the unitary divisors of an integer, Math. Zeitschr, 74(1960), 66–80.

P.J. MCCARTHY, Regular arithmetical Convolutions, Portugaliae Mathematica, 27(1968), 1–13.

W. NARKIEWICZ, On a class of arithmetical Convolutions, Colloq. Math., 10(1963), 81–94.

J. SANDOR AND B. CRISTICI, Handbook of Number Theory II, Kluwer Academic Publishers, Dortrecht/Boston/ London, 2004.

V. SIVA RAMA PRASAD. AND M. V. SUBBARAO, Regular convolutions and a related Lehmer problem, Nieuw Archief Voor Wiskunde, (4)(3)(1985), 1–18.

  • NA

Metrics

PDF views
21
Jan 2024Jul 2024Jan 2025Jul 2025Jan 202611

Published

01-10-2023

How to Cite

Uma Dixit, and Sarada Devi. “Bounds of Regular Analogue of Lehmer Problem”. Malaya Journal of Matematik, vol. 11, no. 04, Oct. 2023, pp. 470-6, doi:10.26637/mjm1104/011.