Common fixed point theorem for pair of quasi triangular α-orbital admissible mappings in complete metric space with application
Downloads
DOI:
https://doi.org/10.26637/mjm1102/006Abstract
In this paper, we establish a common fixed point theorem for pair of quasi triangular α-orbital admissible with an interpolative (φ, ψ)- Banach-Kannan-Chatterjea type Z-contraction mappings with respect to simulation function in complete metric space. An illustrative example is furnished to validate our main result. Our result extends the result of M. S. Khan et al. [15]. As an application, we provide the existence of a solution for a nonlinear Fredholm integral equations.
Keywords:
Interpolative $(\varphi, \psi)$-type $\mathcal{Z}$-contraction, altering distance function, comparison function, simulation function, quasi triangular $\alpha$-orbital admissible mappingsMathematics Subject Classification:
General Mathematics- Pages: 167-180
- Date Published: 01-04-2023
- Vol. 11 No. 02 (2023): Malaya Journal of Matematik (MJM)
H. A FSHARI , H. A YADI AND E. K ARAPINAR , On generalized α−ψ-Geraghty contractions on b-metric spaces, Georgian Mathematical Journal, (2018), https://doi.org/10.1515/gmj-2017-0063. DOI: https://doi.org/10.1515/gmj-2017-0063
M. A. A LGHAMDI , S. G ULYAZ -O ZYURT AND E. K ARAPINAR , ANoteonextendedZ-contraction, Mathematics, 8(2)(2020), 1-14, https://doi.org/10.3390/math8020195. DOI: https://doi.org/10.3390/math8020195
H. A LSAMIR , M. S. N OORANI , W. S HATANAWI AND F. S HADDAD , Generalized Berinde-type contractive
mappings in B-metric spaces with an application, J. Math. Anal., 6(2016), 1-12. DOI: https://doi.org/10.1155/2016/9321082
O. A LQAHTANI AND E. K ARAPINAR , A Bilateral contraction via simulation function, Filomat, 33(15)(2019),
- 4843, https://doi.org/10.2298/FIL1915837A. DOI: https://doi.org/10.2298/FIL1915837A
A. H. A NSARI , W. S HATANAWI , A. KURDI AND G. M ANIU , Best proximity points in complete metric spaces with (P)-property via C-class functions, J. Math. Anal., 7(2016), 54-67.
H. A RGOUBI , B. S AMET AND C. V ETRO , Nonlinear contractions involving simulation functions
in a metric space with a partial order, J. Nonlinear Sci. Appl., 8 (2015), 1082-1094,
https://doi.org/10.22436/jnsa.008.06.18. DOI: https://doi.org/10.22436/jnsa.008.06.18
M. A RSHAD , E. A MEER AND E. K ARAPINAR , Generalized contractions with triangular α-orbital
admissible mapping on Branciari metric spaces, J. of Inequality and Applications, (2016), 63:2016,
https://doi.org/10.1186/s13660-016-1010-7. DOI: https://doi.org/10.1186/s13660-016-1010-7
V. B ERINDE , Sequence of operators and fixed points in quasi metric space, Studia Univ. Babes-Bolyai Math., 41(4)(1996), 23-27.
A. F ARAJZADEH , C. N OYTAPTIM AND A. K AEWCHAROEN , Some fixed point theorems for generalized α −
η − ψ-Geraghty contractive type mappings in partial b-metric spaces, J. of informatics and Mathematical
Sciences, 10(3)(2018), 455-478, https://doi.org/10.26713/jims.v10i3.583.
N. H USSAIN , E. K ARAPINAR AND F. A KBAR , α-admissible mappings and related fixed point theorems, J. of Inequalities and Applications, (2013), 2013:114, https://doi.org/10.1186/1029-242X-2013-114. DOI: https://doi.org/10.1186/1029-242X-2013-114
E. K ARAPINAR , Fixed points results via simulation functions, Filomat, 30(8)(2016), 2343-2350,
https://doi.org/10.2298/FIL1608343K. DOI: https://doi.org/10.2298/FIL1608343K
E. K ARAPINAR , Revisiting simulation functions via interpolative contrations, Appl. Anal. Discrete Math.,
(2019), 859-870, https://doi.org/10.2298/AADM190325038K. DOI: https://doi.org/10.2298/AADM190325038K
E. K ARAPINAR , P. K UMAM AND P. S ALIMI , On α−ψ-Meir-Keeler contractive mappings, Fixed Point Theory Appl., 2013(2013), 12 pages, https://doi.org/10.1186/1687-1812-2013-94. DOI: https://doi.org/10.1186/1687-1812-2013-94
E. K ARAPINAR AND F. K HOJASTEH , An approach to best proximity points results via simulation functions, J. Fixed Point Theory Appl., 19(3)(2017), 1983-1995, https://doi.org/10.1007/s11784-016-0380-2. DOI: https://doi.org/10.1007/s11784-016-0380-2
M. S. K HAN , Y. M. S INGH AND E. K ARAPINAR , On the interpolative (ϕ,ψ)-type Z-contraction, U. P. B. Sci.
Bull., Series A, 83(2)(2021), 25-38. DOI: https://doi.org/10.23919/URSIRSB.2021.9829362
M. S. K HAN , M. S WALEH AND S. S ESSA , Fixed point theorems by altering distances between the points, Bull.Aust. Math. Soc., 30(1984), 1-9, https://doi.org/https://doi.org/10.1017/S0004972700001659. DOI: https://doi.org/10.1017/S0004972700001659
F. K HOJASTEH , S. S HUKLA AND S. R ADENOVIC , A new approach to the study of fixed point theorems via simulation functions, Filomat, 29(6)(2015), 1189-1194, https://doi.org/10.2298/FIL1506189K. DOI: https://doi.org/10.2298/FIL1506189K
C. L ANG AND H. G UAN , Common fixed point and coincidence point results for generalized α −
ϕ E -Geraghty contraction mappings in b-metric spaces, AIMS Mathematics, 7(8)(2022), 14513-14531,
https://doi.org/10.3934/math.2022800. DOI: https://doi.org/10.3934/math.2022800
J. L I AND H. G UAN , Common fixed point of generalized α s -ψ-Geraghty contractive mappings
on b-metric spaces, American Journal of Applied Mathematics and Statistics, 9(2)(2021), 66-74,
https://doi.org/10.12691/ajams-9-2-5. DOI: https://doi.org/10.12691/ajams-9-2-5
O. P OPESCU , Some new fixed point theorems for α-Geraghty contractive type maps in metric spaces, Fixed Point Theory Appl., (2014), 1-12, https://doi.org/10.1186/1687-1812-2014-190. DOI: https://doi.org/10.1186/1687-1812-2014-190
Y. M. S INGH , M. S. K HAN AND S. M. K ANG , F-convex contraction via admissible mapping and related fixed point theorems with an application, Mathematics, 6(2018), 1-15, https://doi.org/10.3390/math6060105. DOI: https://doi.org/10.3390/math6060105
H. Q AWAGNEH , M. S. MD N OORANI , W. S HATANAWI AND H. A LSAMIR , Common fixed points
for pairs of triangular α-admissible mappings, J. Nonlinear Sci. Appl., 10(2017), 6192-6204,
https://doi.org/10.22436/jnsa.010.12.06. DOI: https://doi.org/10.22436/jnsa.010.12.06
A. F. R OLDAN -L EOPEZ - DE -H IERRO , E. K ARAPINAR , C. R OLDAN -L OPEZ - DE -H IERRO AND J. M ARTINEZ -M ORENOA , Coincidence point theorems on metric spaces via simulation functions, J. Computational and Appl. Math., 275(2015), 345-355, https://doi.org/10.1016/j.cam.2014.07.011. DOI: https://doi.org/10.1016/j.cam.2014.07.011
J. R. R OSHAN , V. P ARVANEH , S. S EDGHI , N. S HOBKOLAEI AND W. S HATANAWI , Common fixed points of almost generalized (ψ,φ) s - contractive mappings in ordered b-metric spaces, Fixed Point Theory Appl.,
(2013), 23 pages, https://doi.org/10.1186/1687-1812-2013-159. DOI: https://doi.org/10.1186/1687-1812-2013-159
B. S AMET , C. V ETRO AND P. V ETRO , Fixed points theorems for α −ψ contractive type mappings, Nonlinear Anal., 75(2012), 2154-2165, https://doi.org/10.1016/j.na.2011.10.014. DOI: https://doi.org/10.1016/j.na.2011.10.014
W. S HATANAWI , Common fixed points for mappings under contractive conditions of (α,β,ψ)-admissibility type, Mathematics, 6(2018), 1-11, https://doi.org/10.3390/math6110. DOI: https://doi.org/10.3390/math6110261
W. S HATANAWI , M. S. N OORANI , H. A LSAMIR AND A. B ATAIHAH , Fixed and common fixed point
theorems in partially ordered quasi metric spaces, J. Math. Computer. Sci., 16(2016), 516-528,
http://dx.doi.org/10.22436/jmcs.016.04.05. DOI: https://doi.org/10.22436/jmcs.016.04.05
W. S HATANAWI AND M. P OSTOLACHE , Common fixed point results for mappings under nonlinear
contraction of cyclic form inordered metric spaces, Fixed Point Theory Appl., 2013(2013), 13 pages,
https://doi.org/10.1186/1687-1812-2013-60. DOI: https://doi.org/10.1186/1687-1812-2013-60
Y. S UN , X. L. L IU , J. D ENG AND M. Z HOU , Some fixed point results for α-admissible extended Z-
contraction mappings in extended rectangular b-metric spaces, AIMS Mathematics, 7(3)(2021), 3701-3718,
https://doi.org/10.3934/math.2022205. DOI: https://doi.org/10.3934/math.2022205
S. O MRAN AND L. M ASMALI , α-admissible mapping in C ∗ algebra-valued b-metric spaces and fixed point theorems, AIMS Mathematics, 6(9)(2021), 10192-10206, https://doi.org/10.3934/math.2021590. DOI: https://doi.org/10.3934/math.2021590
- NA
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Rakesh Tiwari, Shashi Thakur
This work is licensed under a Creative Commons Attribution 4.0 International License.