Local isometry of the generalized helicoidal surfaces family in 4-space
Downloads
DOI:
https://doi.org/10.26637/mjm1102/009Abstract
In this paper, we define generalized helicoidal surface in the four dimensional Euclidean space ${\mathbb{E}}^{4}$. We compute two normals and the curvatures of helicoidal surface. Finally, we obtain local isometry from generalized helicoidal surface to the generalized rotational surface by applying Bour's theorem in ${\mathbb{E}}^{4}$.
Keywords:
Euclidean 4-space, isometric deformation, Bour's theorem, helicoidal surface, mean curvatureMathematics Subject Classification:
Computational Mathematics- Pages: 210-218
- Date Published: 01-04-2023
- Vol. 11 No. 02 (2023): Malaya Journal of Matematik (MJM)
E. B OUR , Theorie de la deformation des surfaces, J. Ecole Imperiale Polytech., 22(39)(1862), 1–148.
M. P. D O C ARMO AND M. D AJCZER , Helicoidal surfaces with constant mean curvature, Tôhoku Math. J.,
(1982), 425–435, https://doi.org/10.2748/tmj/1178229204. DOI: https://doi.org/10.2748/tmj/1178229204
E. G¨ULER , Bour’s theorem and lightlike profile curve, Yokohama Math. J., 54(1)(2007), 55–77.
E. G¨ ULER , A new kind helicoidal surface of value m, Int. Elec. J. Geom., 7(1)(2014), 154–162,
https://doi.org/10.36890/iejg.594506. DOI: https://doi.org/10.36890/iejg.594506
E. G¨ULER , Isometricdeformationof(m,n)-typehelicoidalsurfaceinthethreedimensionalEuclideanspace,
Mathematics, 6(11)(2018), 226, https://doi.org/10.3390/math6110226. DOI: https://doi.org/10.3390/math6110226
E. G¨ULER AND A. T URGUT V ANLI , Bour’s theorem in Minkowski 3-space, J. Math. Kyoto Univ., 46(1)(2006),
–63, https://doi.org/10.1215/kjm/1250281796. DOI: https://doi.org/10.1215/kjm/1250281796
E. G¨ULER AND Y. Y AYLI , Generalized Bour’s theorem, Kuwait J. Sci., 42(1)(2015), 79–90.
E. G¨ULER , Y. Y AYLI AND H.H. H ACISALIHO ˘ GLU , Bour’s theorem on the Gauss map in 3-Euclidean space,
Hacettepe J. Math. Stat., 39(4)(2010), 515–525. DOI: https://doi.org/10.1093/ageing/afq060
T. I KAWA , Bour’s theorem and Gauss map, Yokohama Math. J., 48(2)(2001), 173–180.
T. I KAWA , Bour’s theorem in Minkowski geometry, Tokyo J. Math., 24(2)(2001), 377–394,
https://doi.org/10.3836/tjm/1255958182. DOI: https://doi.org/10.3836/tjm/1255958182
F. J I AND Y.H. K IM , Mean curvatures and Gauss maps of a pair of isometric helicoidal
and rotation surfaces in Minkowski 3-space, J. Math. Anal. Appl., 368(2)(2010), 623–635,
https://doi.org/10.1016/j.jmaa.2010.03.054. DOI: https://doi.org/10.1016/j.jmaa.2010.03.054
F. J I AND Y.H. K IM , Isometries between minimal helicoidal surfaces and rotation surfaces in Minkowski
space, Appl. Math. Comput., 220(2013), 1–11, https://doi.org/10.1016/j.amc.2013.05.052. DOI: https://doi.org/10.1016/j.amc.2013.05.052
T. S ASAI , On helicoidal surfaces with constant mean curvature and their limiting surfaces, Tokyo J. Math.,19(1)(1996), 39–50. DOI: https://doi.org/10.3836/tjm/1270043217
D. T HE H IEU AND N. N GOC T HANG , Bour’s theorem in 4-dimensional Euclidean space, Bull. Korean Math.Soc., 54(6)(2017), 2081–2089, https://doi.org/10.4134/BKMS.b160766.
- NA
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Erhan Güler, Yusuf Yaylı
This work is licensed under a Creative Commons Attribution 4.0 International License.