Existence results on nonautonomous partial functional differential equations with state-dependent infinite delay
Downloads
DOI:
https://doi.org/10.26637/mjm1103/001Abstract
The aim of this work is to establish the existence of mild solutions for some nondensely nonautonomous partial functional differential equations with state-dependent infinite delay in Banach space. We assume that, the linear part is not necessarily densely defined and generates an evolution family under the hyperbolique conditions. We use the classic Shauder Fixed Point Theorem, the Nonlinear Alternative Leray-Schauder Fixed Point Theorem and the theory of evolution family, we show the existence of mild solutions. Secondly, we obtain the existence of mild solution in a maximal interval using Banach’s Fixed Point Theorem which may blow up at the finite time, we show that this solution depends continuously on the initial data under the global Lipschitz condition on the second argument of F and we get the existence of global mild solution. We proposesome model arising in dynamic population for the application of our results.
Keywords:
Nondensely nonautonomous equations, evolution family, hyperbolique conditions, mild solutions, state-dependent infinite delayMathematics Subject Classification:
34K43, 35R10, 47J35- Pages: 239-262
- Date Published: 01-07-2023
- Vol. 11 No. 03 (2023): Malaya Journal of Matematik (MJM)
M. A DIMY , Abstract semilinear functional differential equations with non-dense domain, Publications
internes de l’Université de Pau et des Pays de L’Adour, URA 1204 Pau 95/18, (1995).
M. A DIMY , H. B OUSAHIR , AND K. E ZZINBI , local existence and stability for some partial functional
differential equations with infnite delay, Nonlinear Analysis : Theory Methods and Applications, 48(2002),
–348.
M. A DIMY , A. E LAZZOUZI AND K. E ZZINBI , Reduction principle and dynamic behavoirs for a class of partial functional differential equations, Nonlinear Analysis: Theory Methods and Applications, 71(2009), 1709–1727. DOI: https://doi.org/10.1016/j.na.2009.01.008
M. A DIMY AND K. E ZZINBI , A class of linear partial neutral functional differential equations with nondense domain, J. Differential Equations, 147(1998), 108–127. DOI: https://doi.org/10.1006/jdeq.1998.3446
W.G. A IELLO , H.I. F REEDMAN AND J. W U , Analysis of a model representing stage-structured population
growth with state-dependent time delay, SIAM J. Appl. Math., 52(3)(1992), 855–869. DOI: https://doi.org/10.1137/0152048
E. A IT D ADS AND K. E ZZINBI , Boundedness and almost periodicity for some state-dependent delay
differential equations, Electron. J. Differential Equations., 67(2002), 13 pp.
R.R. A KHMEROV , M.I. K AMENSKII , A.S. P OTAPOV , A.E. R ODKINA AND B.N. S ADOVSKII , Measures of
Noncompactness and Condensing Operators, Birkhâuser, Basel (1992)
D. A LEXANDER , D. M ICHAEL AND L. E LENA , On equations with delay depending on solution, Nonlinear
Analysis: TMA, 49(5)(2002), 689–701. DOI: https://doi.org/10.1016/S0362-546X(01)00132-8
M. A LIA , K. E ZZINBI AND M. E L -K K POUMI ` E , Mild solutions for some nonautonomous partial functional differential equations with infinite delay, Afrika Matematika., 29(2018), 1115–1133. DOI: https://doi.org/10.1007/s13370-018-0608-y
W. A RENDT , A. G RABOSCH , G. G REINER , U. G ROH , H.P. L OTZ , U. M OUSTAKAS , R. N AGEL , B. N EUBRANDER AND U. S CHLOTTERBECK , One-parameter Semigroup of Positive Operators, Springer Verlang, Berlin, (1984).
O. A RINO , K. B OUSHABA AND A. B OUSSOUAR , A mathematical model of the dynamics of the phytoplankton-nutrient system. Spatial heterogeneity in ecological models (Alcalá de Henares, 1998), Nonlinear Analysis: RWA., 1(1)(2000), 69–87. DOI: https://doi.org/10.1016/S0362-546X(99)00394-6
M. B ELMEKKI , M. B ENCHOHRA AND K. E ZZINBI , Existence results for some partial functional differential equations with state-dependent delay, Applied Mathematics Letters, 24(2011), 1810–1816. DOI: https://doi.org/10.1016/j.aml.2011.04.039
M. B ENCHOHRA AND S. A BBAS , Advanced Functional Evolution Equations and Inclusions, Springer
International Publishing Switzerland, 2015.
R. B ENKHALTI AND K. E ZZINBI , A massera type criterion for some partial functional differential equations, Dynamic Systems and Applications, 9(2000), 221–228.
R. B ENKHALTI AND K. E ZZINBI , Periodicsolutionsforsomepartialfunctionaldifferentialequations, Applied
Mathematics and Stochastic Analysis, 1(2004), 9–18. DOI: https://doi.org/10.1155/S1048953304212011
H. B OUZAHIR , Contribution à l’Etude des Aspect Quantitatif et Qualitatif pour une Classe d’Equations
Différentielles à Retard infini, en Dimension, PhD thesis, Faculté des Sciences Semlalia - MarraKech
Université Cadi Ayyad, Avril (2001).
H. B OUZAHIR , M. A DIMY AND K. E ZZINBI , Existence and stability for some partial neutral functional
differential equations with infinite delay, Journal of Mathematical Analysis and Applications, 294(2)(2004),
–461.
H. B OUZAHIR , R. B ENKHALTI AND K. E ZZINBI , Existence of a periodic solution for some partial functional differential equations with infinite delay, Journal of Mathematical Analysis and Applications, 256(2001), DOI: https://doi.org/10.1006/jmaa.2000.7321
–280.
A. C A ˜ NADA , P. D RABEK AND A. F ONDA , Handbook of Ordinary Differential Equations, vol. 3, Elsevier,
Y. C AO , J. F AN AND T.C. G ARD , The effects of state-dependent time delay on a stage-structured population growth model, Nonlinear Anal., 19(2)(1992), 95–105. DOI: https://doi.org/10.1016/0362-546X(92)90113-S
G. D A P RATO AND E. S INESTRARI , Differential operators with nondense domains, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 14(1987), 285–344.
G. D A P RATO AND E. S INESTRARI , Non autonomous evolution operators of hyperbolic type, Semigroup
Forum, 45(1992), 302–321. DOI: https://doi.org/10.1007/BF03025772
K. E ZZINBI AND S. G HNIMI , Existence and regularity of solutions for neutral partial functional
integrodifferential equations with infinite delay, Nonlinear Analysis : Hybrid Systems, 4(2010), 54–64. DOI: https://doi.org/10.1016/j.nahs.2009.07.006
K. E ZZINBI , S. G HNIMI AND M. A. T AOUDI , Existence and regularity of solutions for neutral partial functional integro-differential equations with infinite delay, Nonlinear Analysis : Hybrid Systems, 11(2010), 2335–2344.
K. E ZZINBI , H. T OURE AND I. Z ABSONRE , Local existence and regularity of solutions for some partial
functional integro-differential equations with infinite delay in Banach spaces, Nonlinear Analysis, 70(2009), DOI: https://doi.org/10.1016/j.na.2008.05.006
–3389.
S.M. G HAVIDEL , Flow invariance for solutions to nonlinear nonautonomous partial differential delay
equations, Journal of Mathematical Analysis and Applications., 345(2)(2008), 854–870. DOI: https://doi.org/10.1016/j.jmaa.2008.04.041
A. G RANAS AND J. D UGUNDJI , Fixed Point Theory, Springer, New York, 2003. DOI: https://doi.org/10.1007/978-0-387-21593-8
T. G. H ALLAM AND C. E. C LARK , Non-autonomous logistic equations as models of populations in a
deteriorating environment, J. Theor. Biol., 93(1981), 303–311. DOI: https://doi.org/10.1016/0022-5193(81)90106-5
J.K. H ALE , AND J. K ATO , Phase space for retarded equations with infinite delay, Funkcialaj Ekvacioj.,
(1978), 11–41.
J.K. H ALE AND S.M. V ERDUYN L UNEL , Introduction to Functional Differential Equations, Spinger-Verlag,
NewYork, 1993 .
F. H ARTUNG , T.L. H ERDMAN AND J. T URI , Parameter identification in classes of neutral differential equations with state-dependent delays, Nonlinear Anal. TMA,, 39(3)(2000), 305–325. DOI: https://doi.org/10.1016/S0362-546X(98)00169-2
F. H ARTUNG AND J. T URI , Identification of parameters in delay equations with state-dependent delays,
Nonlinear Anal. TMA., 29(11)(1997), 1303–1318. DOI: https://doi.org/10.1016/S0362-546X(96)00100-9
[33] E. HERNÁNDEz, M. PIERri AND G. GonçALVES, Existence results for an impulsive abstract partial differential equation with state-dependent delay, Comput. Math. Appl., 52(2006), 411-420. DOI: https://doi.org/10.1016/j.camwa.2006.03.022
E. H ERN ´ ANDEZ , A. P ROKOPCZYK AND L. L ADEIRA , A note on partial functional differential equations with state-dependent delay, Nonlinear Analysis: Real World Applications, 7(2006), 510–519. DOI: https://doi.org/10.1016/j.nonrwa.2005.03.014
Y. H INO , S. M URAKAMI AND T. N AITO , Functional Differential Equations with Infinite Delay, Lecture Notes in Mathematics, vol. 1473, Springer, Berlin, 1991. DOI: https://doi.org/10.1007/BFb0084432
S. K OUMLA 1, K. E ZZINBI AND R. B AHLOUL , Mild solutions for some partial functional integro-differential equations with finite delay in Fréchet spaces, SEMAJ, 2016.
M. El-K. KpoumiÈ, K. EzZINBI AND D. BÉKOLLÈ, Periodic solutions for some nondensely nonautonomous partial functional differential equations in fading memory spaces, Differ. Equ. Dyn. Syst., 26(1-3)(2018), $177-197$. DOI: https://doi.org/10.1007/s12591-016-0331-9
M. El-K. KPOUMIÈ, K. EZZINBI AND D. BÉKOLLÈ, Nonautonomous partial functional differential equations; existence and regularity, Nonauton. Dyn. Syst., 4 (2017), 108-127. DOI: https://doi.org/10.1515/msds-2017-0010
M. El-K. Kpoumiè, A. H. G. Nsangou, P. Ndambomve., I. Zabsonre and S. Mboutngam, Existence solutions for some nonautonomous partial functional differential equations with state-dependent delay, SEMAJ, Springer, 2019. DOI: https://doi.org/10.1007/s40324-019-00206-w
L. Maniar S. Boulite and M. Moussi, Non-autonomous retarded differential equations: the variation of constants formulas and the asymptotic behaviour, Electronic Journal of Differential Equations, 2003(62), $1-15$.
RADU PRECUP, MMethods in Nonlinear Integral Equations, Springer-Science, Business Media, B.Y, 2002. DOI: https://doi.org/10.1007/978-94-015-9986-3
Монаммed Moussi, Well-Posedness and asymptotic behaviour of non-autonomous boundary Cauchy problems, PhD thesis, Université Mohamed Premier Faculté des Sciences Oujda, Novembre, (2003).
H. OKA AND N. TANAKA, Evolution operators generated by non-densely defined operators, Math. Nachr., 24(5)(2005), 1285-1296. DOI: https://doi.org/10.1002/mana.200310307
Peter E. Kloeden and Christian Pötzsche, Nonautonomous Dynamical Systems in the Life Sciences, Mathematical Bio-sciences Subseries: P.K. Maini, Oxford, Springer-Verlag, September (2013). DOI: https://doi.org/10.1007/978-3-319-03080-7_1
N. T ANAKA , Quasilinear evolution equations with non-densely defined operators, Differ. Integral Equ.,
(1996), 1067–1106.
N. T ANAKA , Semilinear equations in the hyperbolic case. Nonlinear Analy. Theory Methods Appl.,
(5)(1995), 773–788.
THAMI AKRID, Periodicity and Almost periodicity of Non-Autonomous Boundary Cauchy Problems, PhD thesis, Université Mohamed Premier Faculté des Sciences Oujda, Octobre (2011).
G. F. WEBв, Autonomous nonlinear functional differential equations and nonlinear semigroups, Journal of Mathematical Analysis and Applications, 46(1974), 112. DOI: https://doi.org/10.1016/0022-247X(74)90277-7
G. F. Wевв, Asymptotic stability for abstract nonlinear functional differential equations, roceeding of the American Mathematical Society, 54(1)(1976), 225230. DOI: https://doi.org/10.1090/S0002-9939-1976-0402237-0
J. Wu, Theory and Applications of Partial Functional Differential Equations, Mathematical Sciences, vol. 119, Springer, New York, 1996. DOI: https://doi.org/10.1007/978-1-4612-4050-1
M. Zitane and C. Bensouda, Massera problem for non-autonomous retarded differential equations, Journal of Mathematical Analysis and Applications, 402(2013), 453-462. DOI: https://doi.org/10.1016/j.jmaa.2013.01.046
- NA
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Moussa El-Khalil Kpoumié, Abdel Hamid Gamal NSANGOU, Patrice NDAMBOMVE
This work is licensed under a Creative Commons Attribution 4.0 International License.