On the rational difference equation \(x_{n+1}=\frac{x_n\cdot (\overline{a}x_{n-k}+ax_{n-k+1})}{bx_{n-k+1}+cx_{n-k}}\)
Downloads
DOI:
https://doi.org/10.26637/mjm1102/005Abstract
In this paper, we will determine an explicit and a constructive type of solution for the difference equation
\[
x_{n+1}=\frac{x_n\cdot (\overline{a}x_{n-k}+ax_{n-k+1})}{bx_{n-k+1}+cx_{n-k}},\quad n=0,1,\ldots,
\]
where \(\overline{a}\geq 0,a>0,b>0,c>0\) and \(k\geq 1\) is an integer, with initial conditions \(x_{-k},x_{-k+1},\ldots ,x_{-1},x_0\). We also will determine the global behavior of this solution. For the case when \(\overline{a}=0\), the method presented here gives us the particular solution obtained by G\"um\"u\c{s} and Abo-Zeid that establishes an inductive type of proof.
Keywords:
Difference Equations, Riccati equations, Global behaviorMathematics Subject Classification:
Difference equations- Pages: 158-166
- Date Published: 01-04-2023
- Vol. 11 No. 02 (2023): Malaya Journal of Matematik (MJM)
R. A BO -Z EID , Global behavior of two third order rational difference equations with quadratic terms, Math.Slovaca, 69(1)(2019), 147–158, https://doi.org/10.1515/ms-2017-0210. DOI: https://doi.org/10.1515/ms-2017-0210
R. A BO -Z EID , On a fourth order rational difference equation, Tbilisi Math. J., 12(4)(2019), 71–79,
https://doi.org/10.32513/tbilisi/1578020568. DOI: https://doi.org/10.32513/tbilisi/1578020568
R.P. A GARWAL , Difference Equations and Inequalities: Theory, Methods, and Applications, Monographs
and textbooks in pure and applied mathematics, vol. 155, first edn., M. Dekker, (1992).
M. G¨ UM ¨ US ¸, R. A BO -Z EID , An explicit formula and forbidden set for a higher order difference equation, J.Appl. Math. Comp., 63(1)(2020), 133–142, https://doi.org/10.1007/s12190-019-01311-9. DOI: https://doi.org/10.1007/s12190-019-01311-9
V.L. K OCIC , G. L ADAS , Global Behavior of Nonlinear Difference Equations of Higher Order with
Applications, Kluwer Academic Publishers, Dordrecht, (1993), https://doi.org/10.1007/978-94-017-1703-
R.E. M ICKENS , Difference Equations: Theory and Applications, Chapman & Hall, New York, London,
(1990).
H. S EDAGHAT , Nonlinear Difference Equations: Theory with Applications to Social Science
Models, Mathematical Modelling: Theory and Applications, vol. 15., Springer Netherlands, (2003),
https://doi.org/10.1007/978-94-017-0417-5. DOI: https://doi.org/10.1007/978-94-017-0417-5
- NA
Similar Articles
- Moussa El-Khalil Kpoumié, Abdel Hamid Gamal NSANGOU, Patrice NDAMBOMVE, Existence results on nonautonomous partial functional differential equations with state-dependent infinite delay , Malaya Journal of Matematik: Vol. 11 No. 03 (2023): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Rimer ZURITA

This work is licensed under a Creative Commons Attribution 4.0 International License.