On lacunary \(\mathcal{I}\)-invariant arithmetic convergence

Downloads

DOI:

https://doi.org/10.26637/mjm0902/001

Abstract

In this study, we investigate the notion of lacunary \(\mathcal{I}_{\sigma }\) arithmetic convergence for real sequences and examine relations between this new type convergence notion and the notions of  lacunary invariant arithmetic summability, lacunary strongly \(q\)-invariant arithmetic summability and lacunary \(\sigma\)-statistical arithmetic convergence which are defined in this study. Finally, giving the notions of lacunary \(\mathcal{I}_{\sigma }\) arithmetic statistically convergence, lacunary strongly \(\mathcal{I}_{\sigma }\) arithmetic summability, we prove the inclusion relation between them.

Keywords:

Lacunary sequence, statistical convergence, invariant, arithmetic convergence

Mathematics Subject Classification:

40A05 , 40A99 , 46A70 , 46A99
  • Ömer Kişi Faculty of Science, Department of Mathematics, Bartın University, Bartın, Turkey.
  • Pages: 1-11
  • Date Published: 01-04-2021
  • Vol. 9 No. 02 (2021): Malaya Journal of Matematik (MJM)

P. DAS, E. SAVAS¸ AND S.K. GHOSAL, On generalizations of certain summability methods using ideals, Appl. Math. Lett., 24(2011), 1509-1514.

https://doi.org/10.1016/j.aml.2011.03.036

H. FAST, Sur la convergence statistique, Colloq. Math., 2(1951), 241-244.

https://doi.org/10.4064/cm-2-3-4-241-244

J.A. FRIDY, On statistical convergence, Analysis, 5(1985), 301-313.

https://doi.org/10.1524/anly.1985.5.4.301

J.A. FRIDY AND C. ORHAN, Lacunary statistical convergence, Pac J Math., 160(1)(1993), 43-51.

https://doi.org/10.2140/pjm.1993.160.43

A.R. FREEDMAN, J.J. SEMBER AND M. RAPHAEL, Some Cesa'ro-type summability spaces, Proc. Lond. Math. Soc., 37(1978), 508-520.

https://doi.org/10.1112/plms/s3-37.3.508

J.A. FRIDY AND C. ORHAN, Lacunary statistical summability, J. Math. Anal. Appl., 173(2)(1993), 497-504.

https://doi.org/10.1006/jmaa.1993.1082

M. GURDAL AND M.B HUBAN, On -convergence of double sequences in the Topology induced by random 2-norms, Mat. Vesnik, 66(1)(2014), 73-83.

M. GURDAL AND A. SAHINER, Extremal -limit points of double sequences, Appl. Math. E-Notes, 8(2008), 131-137.

O. KISI, On invariant arithmetic statistically convergence and lacunary invariant arithmetic statistically convergence, Palest. J. Math., Vol. 11(2)(2022) , 378-383.

https://doi.org/10.26637/mjm0902/001

O. KISI, On I-lacunary arithmetic statistical convergence, J. Appl. Math. Informatics, Vol. 40(2022), No. 1 - 2, pp. 327 - 339.

https://doi.org/10.14317/jami.2022.327

P. KOSTYRKO, M. MACAJ AND T. SALAT, I-convergence, Real Anal. Exchange, 26(2)(2000), 669-686.

https://doi.org/10.2307/44154069

P. KOSTYRKO, M. MACAJ, T. SALAT AND M. SLEZIAK, convergence and extremal -limit points, Math. Slovaca, 55(2005), 443-464.

J. LI, Lacunary statistical convergence and inclusion properties between lacunary methods, Int. J. Math. Math. Sci., 23(3)(2000), 175-180.

https://doi.org/10.1155/S0161171200001964

M. MURSALEEN, Matrix transformation between some new sequence spaces, Houston J. Math., 9(1983), 505-509.

M. MURSALEEN, On finite matrices and invariant means, Indian J. Pure Appl. Math., 10(1979), 457-460.

A. NABIEV, S. PEHLIVAN AND M. GU¨ RDAL, On I-Cauchy sequences, Taiwanese J. Math., 11(2007), 569-566.

https://doi.org/10.11650/twjm/1500404709

F. NURAY, Lacunary statistical convergence of sequences of fuzzy numbers, Fuzzy Sets and Systems, 99(3)(1998), 353-355.

https://doi.org/10.1016/S0165-0114(98)00031-1

F. NURAY AND E. SAVAS, Invariant statistical convergence and A-invariant statistical convergence, Indian J. Pure Appl. Math., 25(3)(1994), 267-274.

F. NURAY AND E. SAVAS, On σ statistically convergence and lacunary σ statistically convergence, Math. Slovaca, 43(3)(1993), 309-315.

F. NURAY AND H. GOK AND U. ULUSU, I-convergence, Math. Commun., 16(2011), 531-538.

R.A. RAIMI, Invariant means and invariant matrix methods of summability, Duke Math. J., 30(1963), 81-94.

https://doi.org/10.1215/S0012-7094-63-03009-6

W.H. RUCKLE, Arithmetical summability, J. Math. Anal. Appl., 396(2012), 741-748.

https://doi.org/10.1016/j.jmaa.2012.06.048

T. SALAT, On statistically convergent sequences of real numbers, Math. Slovaca, 30(1980), 139-150.

T. SALAT, B.C. TRIPATHY AND M. ZIMAN, On some properties of -convergence, Tatra Mt. Math. Publ., 28(2004), 279-286.

E. SAVAS, Some sequence spaces involving invariant means, Indian J. Math., 31(1989), 1-8.

E. SAVAS, Strong σ-convergent sequences, Bull. Calcutta Math. Soc., 81(1989), 295-300.

E. SAVAS AND R.F. PATTERSON, Lacunary statistical convergence of multiple sequences, Appl. Math. Lett., 19(6)(2006), 527-534.

https://doi.org/10.1016/j.aml.2005.06.018

E. SAVAS AND M. GU¨ RDAL, -statistical convergence in probabilistic normed space, Sci. Bull. Series A Appl. Math. Physics, 77(4)(2015), 195-204.

E. SAVAS AND M. GU¨ RDAL, Certain summability methods in intuitionistic fuzzy normed spaces, J. Intell. Fuzzy Syst., 27(4)(2014), 1621-1629.

https://doi.org/10.3233/IFS-141128

E. SAVAS AND M. GU¨ RDAL, A generalized statistical convergence in intuitionistic fuzzy normed spaces, Science Asia, 41(2015), 289-294.

https://doi.org/10.2306/scienceasia1513-1874.2015.41.289

P. SCHAEFER, Infinite matrices and invariant means, Proc. Amer. Math. Soc., 36(1972), 104-110.

https://doi.org/10.1090/S0002-9939-1972-0306763-0

B.C. TRIPATHY AND B. HAZARIKA, -monotonic and -convergent sequences, Kyungpook Math. J.,51(2011), 233-239.

https://doi.org/10.5666/KMJ.2011.51.2.233

U. ULUSU AND F. NURAY, Lacunary I-invariant convergence, Cumhuriyet Sci. J., 41(3)(2020), 617-624.

https://doi.org/10.17776/csj.689877

T. YAYING AND B. HAZARIKA, On arithmetical summability and multiplier sequences, Nat. Acad. Sci. Lett., 40(1)(2017), 43-46.

https://doi.org/10.1007/s40009-016-0525-2

T. YAYING AND B. HAZARIKA, On arithmetic continuity, Bol. Soc. Parana Mater., 35(1)(2017), 139-145.

https://doi.org/10.5269/bspm.v35i1.27933

T. YAYING, B. HAZARIKA AND H. C¸ AKALLI, New results in quasi cone metric spaces, J. Math. Comput. Sci., 16(2016), 435-444.

https://doi.org/10.22436/jmcs.016.03.13

T. YAYING AND B. HAZARIKA, On arithmetic continuity in metric spaces, Afr. Mat., 28(2017), 985-989.

https://doi.org/10.1007/s13370-017-0498-4

T. YAYING AND B. HAZARIKA, Lacunary Arithmetic Statistical Convergence, Nat. Acad. Sci. Lett., 43(6)(2020), 547-551.

https://doi.org/10.1007/s40009-020-00910-6

  • NA

Metrics

Metrics Loading ...

Published

01-04-2021

How to Cite

Ömer Kişi. “On Lacunary \(\mathcal{I}\)-Invariant Arithmetic Convergence”. Malaya Journal of Matematik, vol. 9, no. 02, Apr. 2021, pp. 1-11, doi:10.26637/mjm0902/001.