On lacunary I-invariant arithmetic convergence

Downloads

DOI:

https://doi.org/10.26637/mjm0902/001

Abstract

In this study, we investigate the notion of lacunary Iσ arithmetic convergence for real sequences and examine relations between this new type convergence notion and the notions of  lacunary invariant arithmetic summability, lacunary strongly q-invariant arithmetic summability and lacunary σ-statistical arithmetic convergence which are defined in this study. Finally, giving the notions of lacunary Iσ arithmetic statistically convergence, lacunary strongly Iσ arithmetic summability, we prove the inclusion relation between them.

Keywords:

Lacunary sequence, statistical convergence, invariant, arithmetic convergence

Mathematics Subject Classification:

40A05 , 40A99 , 46A70 , 46A99
  • Ömer Kişi Faculty of Science, Department of Mathematics, Bartın University, Bartın, Turkey.
  • Pages: 1-11
  • Date Published: 01-04-2021
  • Vol. 9 No. 02 (2021): Malaya Journal of Matematik (MJM)

P. DAS, E. SAVAS¸ AND S.K. GHOSAL, On generalizations of certain summability methods using ideals, Appl. Math. Lett., 24(2011), 1509-1514.

https://doi.org/10.1016/j.aml.2011.03.036

H. FAST, Sur la convergence statistique, Colloq. Math., 2(1951), 241-244.

https://doi.org/10.4064/cm-2-3-4-241-244

J.A. FRIDY, On statistical convergence, Analysis, 5(1985), 301-313.

https://doi.org/10.1524/anly.1985.5.4.301

J.A. FRIDY AND C. ORHAN, Lacunary statistical convergence, Pac J Math., 160(1)(1993), 43-51.

https://doi.org/10.2140/pjm.1993.160.43

A.R. FREEDMAN, J.J. SEMBER AND M. RAPHAEL, Some Cesa'ro-type summability spaces, Proc. Lond. Math. Soc., 37(1978), 508-520.

https://doi.org/10.1112/plms/s3-37.3.508

J.A. FRIDY AND C. ORHAN, Lacunary statistical summability, J. Math. Anal. Appl., 173(2)(1993), 497-504.

https://doi.org/10.1006/jmaa.1993.1082

M. GURDAL AND M.B HUBAN, On -convergence of double sequences in the Topology induced by random 2-norms, Mat. Vesnik, 66(1)(2014), 73-83.

M. GURDAL AND A. SAHINER, Extremal -limit points of double sequences, Appl. Math. E-Notes, 8(2008), 131-137.

O. KISI, On invariant arithmetic statistically convergence and lacunary invariant arithmetic statistically convergence, Palest. J. Math., Vol. 11(2)(2022) , 378-383.

https://doi.org/10.26637/mjm0902/001

O. KISI, On I-lacunary arithmetic statistical convergence, J. Appl. Math. Informatics, Vol. 40(2022), No. 1 - 2, pp. 327 - 339.

https://doi.org/10.14317/jami.2022.327

P. KOSTYRKO, M. MACAJ AND T. SALAT, I-convergence, Real Anal. Exchange, 26(2)(2000), 669-686.

https://doi.org/10.2307/44154069

P. KOSTYRKO, M. MACAJ, T. SALAT AND M. SLEZIAK, convergence and extremal -limit points, Math. Slovaca, 55(2005), 443-464.

J. LI, Lacunary statistical convergence and inclusion properties between lacunary methods, Int. J. Math. Math. Sci., 23(3)(2000), 175-180.

https://doi.org/10.1155/S0161171200001964

M. MURSALEEN, Matrix transformation between some new sequence spaces, Houston J. Math., 9(1983), 505-509.

M. MURSALEEN, On finite matrices and invariant means, Indian J. Pure Appl. Math., 10(1979), 457-460.

A. NABIEV, S. PEHLIVAN AND M. GU¨ RDAL, On I-Cauchy sequences, Taiwanese J. Math., 11(2007), 569-566.

https://doi.org/10.11650/twjm/1500404709

F. NURAY, Lacunary statistical convergence of sequences of fuzzy numbers, Fuzzy Sets and Systems, 99(3)(1998), 353-355.

https://doi.org/10.1016/S0165-0114(98)00031-1

F. NURAY AND E. SAVAS, Invariant statistical convergence and A-invariant statistical convergence, Indian J. Pure Appl. Math., 25(3)(1994), 267-274.

F. NURAY AND E. SAVAS, On σ statistically convergence and lacunary σ statistically convergence, Math. Slovaca, 43(3)(1993), 309-315.

F. NURAY AND H. GOK AND U. ULUSU, I-convergence, Math. Commun., 16(2011), 531-538.

R.A. RAIMI, Invariant means and invariant matrix methods of summability, Duke Math. J., 30(1963), 81-94.

https://doi.org/10.1215/S0012-7094-63-03009-6

W.H. RUCKLE, Arithmetical summability, J. Math. Anal. Appl., 396(2012), 741-748.

https://doi.org/10.1016/j.jmaa.2012.06.048

T. SALAT, On statistically convergent sequences of real numbers, Math. Slovaca, 30(1980), 139-150.

T. SALAT, B.C. TRIPATHY AND M. ZIMAN, On some properties of -convergence, Tatra Mt. Math. Publ., 28(2004), 279-286.

E. SAVAS, Some sequence spaces involving invariant means, Indian J. Math., 31(1989), 1-8.

E. SAVAS, Strong σ-convergent sequences, Bull. Calcutta Math. Soc., 81(1989), 295-300.

E. SAVAS AND R.F. PATTERSON, Lacunary statistical convergence of multiple sequences, Appl. Math. Lett., 19(6)(2006), 527-534.

https://doi.org/10.1016/j.aml.2005.06.018

E. SAVAS AND M. GU¨ RDAL, -statistical convergence in probabilistic normed space, Sci. Bull. Series A Appl. Math. Physics, 77(4)(2015), 195-204.

E. SAVAS AND M. GU¨ RDAL, Certain summability methods in intuitionistic fuzzy normed spaces, J. Intell. Fuzzy Syst., 27(4)(2014), 1621-1629.

https://doi.org/10.3233/IFS-141128

E. SAVAS AND M. GU¨ RDAL, A generalized statistical convergence in intuitionistic fuzzy normed spaces, Science Asia, 41(2015), 289-294.

https://doi.org/10.2306/scienceasia1513-1874.2015.41.289

P. SCHAEFER, Infinite matrices and invariant means, Proc. Amer. Math. Soc., 36(1972), 104-110.

https://doi.org/10.1090/S0002-9939-1972-0306763-0

B.C. TRIPATHY AND B. HAZARIKA, -monotonic and -convergent sequences, Kyungpook Math. J.,51(2011), 233-239.

https://doi.org/10.5666/KMJ.2011.51.2.233

U. ULUSU AND F. NURAY, Lacunary I-invariant convergence, Cumhuriyet Sci. J., 41(3)(2020), 617-624.

https://doi.org/10.17776/csj.689877

T. YAYING AND B. HAZARIKA, On arithmetical summability and multiplier sequences, Nat. Acad. Sci. Lett., 40(1)(2017), 43-46.

https://doi.org/10.1007/s40009-016-0525-2

T. YAYING AND B. HAZARIKA, On arithmetic continuity, Bol. Soc. Parana Mater., 35(1)(2017), 139-145.

https://doi.org/10.5269/bspm.v35i1.27933

T. YAYING, B. HAZARIKA AND H. C¸ AKALLI, New results in quasi cone metric spaces, J. Math. Comput. Sci., 16(2016), 435-444.

https://doi.org/10.22436/jmcs.016.03.13

T. YAYING AND B. HAZARIKA, On arithmetic continuity in metric spaces, Afr. Mat., 28(2017), 985-989.

https://doi.org/10.1007/s13370-017-0498-4

T. YAYING AND B. HAZARIKA, Lacunary Arithmetic Statistical Convergence, Nat. Acad. Sci. Lett., 43(6)(2020), 547-551.

https://doi.org/10.1007/s40009-020-00910-6

  • NA

Metrics

PDF views
333
Jul 2021Jan 2022Jul 2022Jan 2023Jul 2023Jan 2024Jul 2024Jan 2025Jul 2025Jan 202654
|

Published

01-04-2021

How to Cite

Ömer Kişi. “On Lacunary I-Invariant Arithmetic Convergence”. Malaya Journal of Matematik, vol. 9, no. 02, Apr. 2021, pp. 1-11, doi:10.26637/mjm0902/001.