Existence and controllability results for an impulsive stochastic integro-differential equations with state-dependent delay

Downloads

DOI:

https://doi.org/10.26637/mjm1101/004

Abstract

In this article, we discuss the existence of mild solutions for a class of impulsive stochastic integro-differential equations with state-dependent delay in a real Hilbert space as well as the controllability of these solutions. These equations are posed in a real Hilbert space. In the beginning, we use the theory of resolvent operators in the sense of Grimmer and fixed point theory to show that there is a mild solution to the problem. The controllability of the mild solution is the next aspect of the problem that we will investigate in more depth. At the end of the article, a case study is used to show how the abstract findings of the research can be used.

 

Keywords:

Existence, Controllability, résolvent operator, impulsive stochastic integro-differential equations, semigroup theory, fixed point theorems, State-dependent delay

Mathematics Subject Classification:

34K50, 34K45, 93B05
  • Mamadou Abdoul Diop Université Gaston Berger de Saint-Louis, UFR SAT, Département de Mathématiques, B.P. 234, Saint-Louis, Sénégal.
  • Mbarack Fall Université Gaston Berger de Saint-Louis, UFR SAT, Département de Mathématiques, B.P. 234, Saint-Louis, Sénégal.
  • Firmin Bodjrenou Institut de Mathématiques et de Sciences Physiques, URMPM B.P. 613, Porto-Novo, Bénin.
  • Carlos Ogouyandjou Institut de Mathématiques et de Sciences Physiques, URMPM B.P. 613, Porto-Novo, Bénin. https://orcid.org/0000-0001-7115-7724
  • Pages: 43-65
  • Date Published: 01-01-2023
  • Vol. 11 No. 01 (2023): Malaya Journal of Matematik (MJM)

F. Andrade, C. Cuevas, H.R. Henríquez, Periodic solutions of abstract functional differential equations with state-dependent delay, Math Methods Appl Sci., 39 (2016), 3897-3909.

K. Balachandran, J.P. Dauer, Controllability of nonlinear systems via Fixed Point Theorems, J. Optim. Theory Appl., 53 (1987), 345-352.

D.D. Bainov, V. Lakshmikantham, and P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientic, Singapore, 1989.

C.T.H. Baker, C.A.H. Paul; Pitfalls in parameter estimation for delay differential equations. SIAM J. Sei. Comp. 18(1997), 305-314.

K. Balachandran, J.P. Dauer, Controllability of nonlinear systems in Banach spaces, A survey. J. Optim. Theory Appl., 115 (2002), 7-28.

I.M. Barka, M.A. Diop, K. Ezzinbi and M.H.M. Hamit, Controllability for nonlocal stochastic integrodifferential evolution equations with the lack of compactness, Stochastic Analysis and Applications, (2021).

M.Benchohra, J. Henderson, and S.K. Ntouyas, Impulsive Differential Equations and Inclusions, Hindawi Publishing Corporation, New York, Vol. 2, 2006.

T.A. Burton, C. Kirk, A fixed point theorem of Krasnoselskii-Schaefer type, Math. Nachr., 189 (1998), $23-31$.

E.N. Chukwu, S.M. Lenhart Controllability questions for nonlinear systems in abstract spaces, J. Optim. Theory Appl., 68 (1991), 437-462.

G. Da Prato, J. Zabczyк, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge 1992.

W. Desh, R.C. Grimmer and W. Schappacher, Some considerations for linear integrodifferential equations, Journal of Mathematical analysis and Applications, 104 (1984), 219-234.

M.A. DiOP, M.M. ZENE, On the asymptotic stability of impulsive neutral stochastic partial integrodifferential equations with variable delays and Poisson jumps, Afrika Matematika, 27(1-2) (2016), 215-228.

M.A. Diop, A.T.g. Amoussou, C. Ogouyandjou, M.S. Mohamed, Existence results for an neutral integrodifferential stochastic functional differential impulsive equations with state-dependent delay, Transactions of A. Razmadze Mathematical Institute, 173 (2019), 17-31.

M.A. Diop, P.A.D. Guindo, M. Fall, A. Diakhaby, Optimal controls for stochastic functional integrodifferential equations, Elec. J. of Math. Anal. and Appl., 9 (2021), 241-261.

R.D. DrIVEr, Existence Theory for a Delay Differential System, Contrib. Diff. 1 (1963), 317-336.

R.D. Driver, Ordinary and Delay Differential Equations, Applied Mathematical Sciences 20, Springer: New York, NY, USA, 1977.

K. Ezzinbi, G. Degla, P. Ndambomve, Controllability for some Partial Functional Integrodifferential Equations with Nonlocal Conditions in Banach Spaces, Discussiones Mathematicae, Differential Inclusions, Control and Optimization, 35(1) (2015),1-22.

M. Fall, M.D. Didiya, A.W. Gnonlonfoun, M. A. Diop, On Impulsive Integrodifferential Equations With State Dependent Delay, Journal of Numerical Mathematics and Stochastics, 13(1) (2022), 29-54.

L. GaWARecki, V. MandreKar, Stochastic Differential Equations in Infinite Dimensions with Applications to Stochastic Partial Differential Equations, Spinger, Berlin, Heidelberg, (2011).

J.R. Graef, J. Henderson, A. Ouahab, Impulsive Differential Inclusions. A Fixed Point Approach, De Gruyter Series in Nonlinear Analysis and Applications 20, Berlin: de Gruyter, (2013).

J.R. Graef, J. Henderson, A. Ouahab, Topological Methods for Differential Equations and Inclusions, Monographs and Research Notes in Mathematics, Boca Raton, FL: CRC Press, (2019).

R.C Grimmer, Resolvent operators for integral equations in a Banach space, Transactions of the American Mathematical Society, 273, (1982), 333-349.

R. Grimmer, A.J. Pritchard, Analytic resolvent operators for integral equations in a Banach space, Journal of Differential Equations, 50 (1983), 234-259.

A. Halanay, D. Wexler, Teoria Calitativa a sistemelor Impulsuri, (in Romanian), Editura Academiei Republicii Socialiste România, Bucharest, Romanian, (1968).

J.K. Hale, J. Kato, Phase spaces for retarded equations with infinite delay, Funkc. Ekvacioj, 21 (1978), $11-41$

E. Hernandez, M. Pierri, G. Goncalves, Existence results for a impulsive abstract partial differential equation with state-dependent delay, Comput. Math. Appl., 52 (2006), 411-420.

E. HernÁndez, A. Prokopczyk, L. LAdeira A note on partial functional differential equations with statedependent delay, Nonlinear Analysis:RWA, 7(4)(2006), 510-519.

E. Hernández, R. Sakthivel, S.T. Aki, Existence results for impulsive evolution differential equations with state-dependent delay, Electron. J. Differ. Equ., 2008 (2008), 1-11.

H.R. Henriquez, Existence of solutions of non-autonomous second order functional differential equations with infinite delay, Nonlinear Anal., 74 (2011), 3333-3352.

E. HernÁndez, M. Pierri, S-asymptotically periodic solutions for abstract equations with state-dependent delay, Bull Aust Math Soc., 98(3) (2018), 456-464.

E. HernÁndez, J. Wu, Existence, Uniqueness and Qualitative Properties of Global Solutions of Abstract Differential Equations with State-Dependent Delay, Proceedings of the Edinburgh Mathematical Society, 62(3) (2019), 771-788.

H. MA, B. LiU, Exact controllability and continuous dependence of fractional neutral integro-differential equations with state dependent delay, Acta Mathematica Scientia. Series B, 37(1) (2017), 235-258.

C.M. Marle, Measures et Probabilités, Hermann, Paris (1974).

V.D. Milman, A.A. Myshkis, On the stability of motion in the presence of impulses, Sib. Math. J., (in Russian) 1, (1960), 233-237.

H. OKA, Integrated resolvent operators, Journal of Integral Equations, 7 (1995) 193-232.

A. PAZY, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, NY, USA, (1983).

K. Ravikumar, A.T.g. Amoussou, C. Ogouyandjou, M.A. Diop, Existence and uniqueness of mild solutions of stochastic partial integro-differential impulsive equations with infinite delay via resolvent operator, Advances in Dynamical Systems and Applications, 14(1) (2019), 83-118.

B.N. SadovskII, On a fixed point principle, Funct. Anal. Appl., 1 (1967), 71-74.

R. SAKTHIVEL, Q.H. ChoI, S.M. ANTHONI, Controllability result for nonlinear evolution integrodifferential systems, Applied Mathematics Letters, 17 (2004) 1015-1023.

A.M. Samoilenko, N.A. Perestyuk, Impulsive Differential Equations, World Scientic, Singapore, (1995).

A. Slama, A. Boudaoui, Approximate controllability of fractional nonlinear neutral stochastic differential inclusion with nonlocal conditions and infinite delay, Arab. J. Math., 6 (2017) 31-54.

N. TUAn, L. NGUYEn, On solutions of a system of hereditary and self-referred partial-differential equations, Numer. Algorithms, 55 (2010), 101-113.

U. VAn Le, L. NGUyen, Existence of solutions for systems of self-referred and hereditary differential equations, Electron. J. Differ. Equ., 51 (2008), 1-7.

Z. YAN, Controllability of semilinear integro-differential systems with nonlocal conditions, Int. J. Comput. Appl. Math., 3 (2007), 221-236.

Z. YAN, X. YAN , Existence of solutions for impulsive partial stochastic neutral integrodifferential equations with state-dependent delay, Collect. Math. 64 (2013), 235-250.

X. ZhAng, Exact controllability of semilinear evolution systems and its application, J. Optim. Theory Appl., 107 (2000), 415-432.

  • NA

Metrics

Metrics Loading ...

Published

01-01-2023

How to Cite

Diop, M. A., M. Fall, F. . Bodjrenou, and C. Ogouyandjou. “Existence and Controllability Results for an Impulsive Stochastic Integro-Differential Equations With State-Dependent Delay”. Malaya Journal of Matematik, vol. 11, no. 01, Jan. 2023, pp. 43-65, doi:10.26637/mjm1101/004.