Oscillation condition for first order linear dynamic equations on time scales
Downloads
DOI:
https://doi.org/10.26637/mjm1103/002Abstract
In this paper, we deal with the first-order dynamic equations with
nonmonotone arguments
\begin{equation*}
y^{\Delta }(t)+\underset{i=1}{\overset{m}{\sum }}p_{i}(t)y\left( \tau
_{i}(t)\right) =0,\text{ }t\in \lbrack t_{0},\infty )_{\mathbb{T}}
\end{equation*}
where \(p_{i}\in C_{rd}\left( [t_{0},\infty )_{\mathbb{T}}, \mathbb{R}^{+}\right) ,\) \(\tau _{i}\in C_{rd}\left( [t_{0},\infty )_{\mathbb{T}},\mathbb{T}\right) \) and \(\tau _{i}(t)\leq t,\) \( \lim_{t\rightarrow \infty
}\tau _{i}(t)=\infty \) for \(1\leq i\leq m\). Also, we present a new sufficient condition for the oscillation of delay dynamic equations on time scales. Finally, we give an example illustrating the result.
Keywords:
Dynamic equation, nonmonotone delays, oscillatory solution, time scalesMathematics Subject Classification:
39A12, 39A21, 34C10, 34N05- Pages: 263-271
- Date Published: 01-07-2023
- Vol. 11 No. 03 (2023): Malaya Journal of Matematik (MJM)
R. P. Agarwal And M. Bohner, An oscillation criterion for first order delay dynamic equations, Funct. Differ. Equ.,16(1)(2009), 11–17.
M. Bohner And A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhauser, Boston, 2001. DOI: https://doi.org/10.1007/978-1-4612-0201-1
M. Bohner And A. Peterson, Advances in Dynamic Equations on Time Scales. Birkhauser, Boston, 2003. DOI: https://doi.org/10.1007/978-0-8176-8230-9
M. Bohner, Some Oscillation criteria for first order delay dynamic equations, Far East J. Appl. Math., 18(3)(2005), 289-304.
A. Elbert AnD I. P. Stavroulakis, Oscillations of first order differential equations with deviating arguments, Univ of Ioannina T.R. No 172, 1990, Recent trends in differential equations, 163-178, World Sci. Ser. Appl. Anal., 1 (1992) World Sci. Publishing Co. DOI: https://doi.org/10.1142/9789812798893_0013
L. H. Erbe, Q. Kong And B. G. Zhang, Oscillation Theory for Functional Differential Equations, Marcel Dekker, New York, 1995.
N. Fukagai and T. Kusano, Oscillation theory of first order functional differential equations with deviating arguments, Ann. Mat. Pura Appl., 136(1984), 95-117. DOI: https://doi.org/10.1007/BF01773379
I. GYŐRI AND G. LADAS, Oscillation Theory of Delay Differential Equations with Applications, Clarendon Press, Oxford, 1991. DOI: https://doi.org/10.1093/oso/9780198535829.001.0001
B. KaRpuz and Ö. ÖCALAN, New oscillation tests and some refinements for first-order delay dynamic equations, Turkish J. Math., 40(4)(2016), 850-863. DOI: https://doi.org/10.3906/mat-1507-98
B. KarpuZ, Sharp oscillation and nonoscillation tests for linear difference equations, J. Difference Equ Appl.,23(12)(2017), 1929–1942. DOI: https://doi.org/10.1080/10236198.2017.1379515
B. Karpuz, Sharp oscillation and nonoscillation tests for delay dynamic equations, Math. Methods Appl. Sci.,42(9)(2019), 2993–3001. DOI: https://doi.org/10.1002/mma.5558
N. KIliÇ AND Ö. ÖCALAN, Oscillation criteria for first-order dynamic equations with nonmonotone delay, Hacet. J. Math. Stat., $mathbf{5 0}(2)(2021), 318-325$. DOI: https://doi.org/10.15672/hujms.674428
Ö. ÖCALAN AND N. KILIÇ, Sufficient oscillation conditions for dynamic equations with nonmonotone delays, J. Appl. Math. & Informatics, 40(5-6)(2022), 843-856.
R. G. Koplatadze And T. A. ChanturiJa, Oscillating and monotone solutions of first-order differential equations with deviating arguments, (Russian), Differentsial'nye Uravneniya, 8(1982), 1463-1465.
G.S. Ladde, V. LaKShmikantham AND B.G. ZHAnG, Oscillation Theory of Differential Equations with Deviating Arguments, Monographs and Textbooks in Pure and Applied Mathematics, vol. 110, Marcel Dekker, Inc., New York, $(1987)$
Ö. ÖCAlan, U. M. ÖZKAN AND M. K. Yildiz, Oscillatory solutions for dynamic equations with non-monotone arguments, J. Math. Comput. Sci., 7(4)(2017), 725-738.
Ö. ÖCalan, Oscillation of first-order dynamic equations with nonmonotone delay, Math. Methods Appl. Sci., $mathbf{4 3 ( 7 ) ( 2 0 2 0 ) , 3 9 5 4 - 3 9 6 4}$
Ö. ÖCALAN, An improved oscillation criteria for first order dynamic equations, Turk J Math., 45(2021), $487-495$. DOI: https://doi.org/10.3906/mat-2011-12
Y. ŞAhiner AND I. P. StavroulakiS, Oscillations of first order delay dynamic equations, Dynam. Systems Appl.,15(3-4)(2006), 645–655.
B. G., ZHAng AND X. Deng, Oscillation of delay differential equations on time scales, Math. Comput. Modelling, $mathbf{3 6}(11-13)(2002), 1307-1318$ DOI: https://doi.org/10.1016/S0895-7177(02)00278-9
B. G. Z HANG , X. Y AN , X. L IU , Oscillation criteria of certain delay dynamic equations on time scales, J. Difference Equ. Appl., 11(10)(2005), 933–946. DOI: https://doi.org/10.1080/10236190500211952
- There is no supporting agencies.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Özkan Öcalan, Nurten KILIÇ
This work is licensed under a Creative Commons Attribution 4.0 International License.