Approximating local solution of IVPs of nonlinear first order ordinary hybrid integrodifferential equations
Downloads
DOI:
https://doi.org/10.26637/mjm1104/002Abstract
In this paper, we prove a couple of approximation results for local existence and uniqueness of the solution of a IVP of nonlinear first order ordinary hybrid integrodifferential equations by using the Dhage monotone iteration method based on a hybrid fixed point theorem of Dhage (2022) and Dhage {et al.} (2022). An approximation result for the Ulam-Hyers stability of the local solution of the considered hybrid differential equation is also established. Finally, our main abstract results are also illustrated with a couple of numerical examples.
Keywords:
Integrodifferential equation, Hybrid fixed point principle, Dhage Monotone iteration method, Ulam-Hyers stability, Nonlinear initial value problems, Hybrid differential equation, Dhage iteration method, Existence and approximation theoremMathematics Subject Classification:
34A12, 34A34- Pages: 344-355
- Date Published: 01-10-2023
- Vol. 11 No. 04 (2023): Malaya Journal of Matematik (MJM)
M.A. A L -J AWARY , M.I. A DWAN AND G.H. R ADHI , Three iteration methods for slving second order nonlinear ODEs arising in physis, J. King Saud Univ.-Science, 32 (2020), 312-323. https://doi.org/10.1016/j.jksus.2018.05.006 DOI: https://doi.org/10.1016/j.jksus.2018.05.006
E.A. C ODDINGTON , An Introduction to Ordinary Differential Equations, Dover Publications Inc. New York, 1989.
B. C. D HAGE , Hybrid fixed point theory in partially ordered normed linear spaces and applications to fractional integral equations, Differ. Equ. Appl., 5 (2013), 155-184. https://doi.org/10.7153/dea-05-11 DOI: https://doi.org/10.7153/dea-05-11
B.C. D HAGE , A coupled hybrid fixed point theorem for sum of two mixed monotone coupled
operators in a partially ordered Banach space with applications, Tamkang J. Math., 50(1) (2019), 1-36.
https://doi.org/10.5556/j.tkjm.50.2019.2502 DOI: https://doi.org/10.5556/j.tkjm.50.2019.2502
B.C. D HAGE , Coupled and mixed coupled hybrid fixed point principles in a partially ordered Banach algebra and PBVPs of nonlinear coupled quadratic differential equations, Differ. Equ. Appl., 11(1) (2019), 1-85. https://doi.org/10.7153/dea-2019-11-01 DOI: https://doi.org/10.7153/dea-2019-11-01
B.C. D HAGE , A Schauder type hybrid fixed point theorem in a partially ordered metric space
with applications to nonlinear functional integral equations, J˜ n¯ an¯ abha, 52 (2) (2022), 168-181.
https://doi.org/10.58250/jnanabha.2022.52220 DOI: https://doi.org/10.58250/jnanabha.2022.52220
B.C. D HAGE AND S.B. D HAGE , Approximating solutions of nonlinear first order ordinary differential equations, GJMS Special issue for Recent Advances in Mathematical Sciences and Applications-13, GJMS, 2 (2) (2013), 25-35.
B.C. D HAGE AND S.B. D HAGE , Approximating solutions of nonlinear PBVPs of second-order differential equations via hybrid fixed point theory, Electronic Journal of Differential Equations, 20, (2015), 1-10.
B.C. D HAGE , S.B. D HAGE AND J.R. G RAEF , Dhage iteration method for initial value problms for nonlinear irst order hybrid integrodiferential equations, J. Fixed Point Theory Appl., 18 (2016), 309-326. https://doi.org/10.1007/s11784-015-0279-3 DOI: https://doi.org/10.1007/s11784-015-0279-3
B.C. D HAGE , J.B. D HAGE AND S.B. D HAGE , Approximating existence and uniqueness of solution to a nonlinear IVP of first order ordinary iterative differential equations, Nonlinear Studies, 29 (1) (2022), 303-314.
J.B. D HAGE AND B.C. D HAGE , Approximating local solution of an IVP of nonlinear first order ordinary hybrid differential equations, Nonlinear Studies, 30 (3), 721-732.
J.B. D HAGE , S.B. D HAGE AND B. C. D HAGE , Dhage iteration method for an algorithmic approach to local solution of the nonlinear second order ordinary hybrid differential equations, Electronic J. Math. Anal. Appl., 11 (2) No. 3, (2023), 1-10. https://doi.org/10.21608/ejmaa.2023.191335.1008 DOI: https://doi.org/10.21608/ejmaa.2023.191335.1008
J.B. D HAGE , S.B. D HAGE AND B. C. D HAGE , An algorithmic approach to local solutioon of the
nonlinear second order ordinary hybrid integrodifferential equations, J˜ n¯ an¯ abha, 53 (1) (2023), 277-288.
https://doi.org/10.58250/jnanabha.2023.53133 DOI: https://doi.org/10.58250/jnanabha.2023.53133
J.B. D HAGE , S.B. D HAGE AND B. C. D HAGE , Approximation results or PBVPs of nonlinear first order ordinary functional differential equations in a closed subset of the Banach space, Malaya J. Mat., 11 (S) (2023), 197-207. http://doi.org/10.26637/mjm11S/012 DOI: https://doi.org/10.26637/mjm11S/012
A. G RANAS AND J. D UGUNDJI , Fixed Point Theory, Springer 2003. https://doi.org/10.1007/978-0-387-21593-8 DOI: https://doi.org/10.1007/978-0-387-21593-8
J. H UANG , S. J UNG AND Y. L I , On Hyers-Ulam stability of nonlinear differential equations, Bull. Korean Math. Soc., 52 (2) (2015), 685-697. https://doi.org/10.4134/bkms.2015.52.2.685 DOI: https://doi.org/10.4134/BKMS.2015.52.2.685
V. L AKSHMIKANTHAM AND S. L EELA , Differential and Integral Inequalities, Academic Press, New York, 1969. https://doi.org/10.1016/s0076-5392(08)62290-0 DOI: https://doi.org/10.1016/S0076-5392(08)62290-0
B. L I , Y. Z HANG , X. L I , Z. E SKANDARI AND Q. H E , Bifurcation analysis and complex dynamics of a Kopel triopody model, J. Comput. Appl. Math., 426 (2023), 115089. https://doi.org/10.1016/j.cam.2023.115089 DOI: https://doi.org/10.1016/j.cam.2023.115089
R. L YONS , A.S. V ATSALA AND R.A. C HIQUET , Picard’s itertive method for Caputo fractional differential equations with numerical results, Mathematics, (2017), 5, 65. https://doi.org/10.3390/math5040065 DOI: https://doi.org/10.3390/math5040065
J.I. R AMOS , Picard’s iterative method for nonlinear advection-reaction-diffusion equations, Appl. Math. Comput., 215 (4) (2009), 1526-1536. https://doi.org/10.1016/j.amc.2009.07.004 DOI: https://doi.org/10.1016/j.amc.2009.07.004
K. S HAH , B. A BDALLA , T. A BDELJAWAD AND R. G UL , Analysis of multi-point impulsive problem of fractional order differential equations, Boundary Value Problem, 2023 (1) (2023), 1-17. https://doi.org/10.1186/s13661-022-01688-w DOI: https://doi.org/10.1186/s13661-022-01688-w
H. T EMIMI AND A.R. A NSARI , A new iterative technique for solving nonlinear second order multi-point boundary value problems, Appl. Math. Comput., 218 (4), (2011), 1457-1466. https://doi.org/10.1016/j.amc.2011.06.029 DOI: https://doi.org/10.1016/j.amc.2011.06.029
A.K. T RIPATHY , Hyers-Ulam stability of ordinary differential equations, Chapman and Hall / CRC, London, NY, 2021. https://doi.org/10.1201/9781003120179 DOI: https://doi.org/10.1201/9781003120179
S.Q. W ANG AND J.H. H E , Variational Iteration Method for Solving Integrodifferential Equations, Phy. Lett. A, 367 (3) (2007), 188-191. https://doi.org/10.1016/j.physleta.2007.02.049 DOI: https://doi.org/10.1016/j.physleta.2007.02.049
Similar Articles
- A.Anguraj, K. Ramkumar, Existence and uniqueness of mild solution for stochastic partial integro-differential equations with delays , Malaya Journal of Matematik: Vol. 6 No. 03 (2018): Malaya Journal of Matematik (MJM)
- Özkan Öcalan, Nurten KILIÇ, Oscillation condition for first order linear dynamic equations on time scales , Malaya Journal of Matematik: Vol. 11 No. 03 (2023): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Janhavi Dhage, Bapurao Dhage
This work is licensed under a Creative Commons Attribution 4.0 International License.