Approximating local solution of IVPs of nonlinear first order ordinary hybrid integrodifferential equations

Downloads

DOI:

https://doi.org/10.26637/mjm1104/002

Abstract

In this paper, we prove a couple of approximation results for local existence and uniqueness of the solution of a IVP of nonlinear first order ordinary hybrid integrodifferential equations by using the Dhage monotone iteration method based on a hybrid fixed point theorem of Dhage (2022) and Dhage {et al.} (2022). An approximation result for the Ulam-Hyers stability of the local solution of the considered hybrid differential equation is also established. Finally, our main abstract results are also illustrated with a couple of numerical examples.

Keywords:

Integrodifferential equation, Hybrid fixed point principle, Dhage Monotone iteration method, Ulam-Hyers stability, Nonlinear initial value problems, Hybrid differential equation, Dhage iteration method, Existence and approximation theorem

Mathematics Subject Classification:

34A12, 34A34
  • Pages: 344-355
  • Date Published: 01-10-2023
  • Vol. 11 No. 04 (2023): Malaya Journal of Matematik (MJM)

M.A. A L -J AWARY , M.I. A DWAN AND G.H. R ADHI , Three iteration methods for slving second order nonlinear ODEs arising in physis, J. King Saud Univ.-Science, 32 (2020), 312-323. https://doi.org/10.1016/j.jksus.2018.05.006 DOI: https://doi.org/10.1016/j.jksus.2018.05.006

E.A. C ODDINGTON , An Introduction to Ordinary Differential Equations, Dover Publications Inc. New York, 1989.

B. C. D HAGE , Hybrid fixed point theory in partially ordered normed linear spaces and applications to fractional integral equations, Differ. Equ. Appl., 5 (2013), 155-184. https://doi.org/10.7153/dea-05-11 DOI: https://doi.org/10.7153/dea-05-11

B.C. D HAGE , A coupled hybrid fixed point theorem for sum of two mixed monotone coupled

operators in a partially ordered Banach space with applications, Tamkang J. Math., 50(1) (2019), 1-36.

https://doi.org/10.5556/j.tkjm.50.2019.2502 DOI: https://doi.org/10.5556/j.tkjm.50.2019.2502

B.C. D HAGE , Coupled and mixed coupled hybrid fixed point principles in a partially ordered Banach algebra and PBVPs of nonlinear coupled quadratic differential equations, Differ. Equ. Appl., 11(1) (2019), 1-85. https://doi.org/10.7153/dea-2019-11-01 DOI: https://doi.org/10.7153/dea-2019-11-01

B.C. D HAGE , A Schauder type hybrid fixed point theorem in a partially ordered metric space

with applications to nonlinear functional integral equations, J˜ n¯ an¯ abha, 52 (2) (2022), 168-181.

https://doi.org/10.58250/jnanabha.2022.52220 DOI: https://doi.org/10.58250/jnanabha.2022.52220

B.C. D HAGE AND S.B. D HAGE , Approximating solutions of nonlinear first order ordinary differential equations, GJMS Special issue for Recent Advances in Mathematical Sciences and Applications-13, GJMS, 2 (2) (2013), 25-35.

B.C. D HAGE AND S.B. D HAGE , Approximating solutions of nonlinear PBVPs of second-order differential equations via hybrid fixed point theory, Electronic Journal of Differential Equations, 20, (2015), 1-10.

B.C. D HAGE , S.B. D HAGE AND J.R. G RAEF , Dhage iteration method for initial value problms for nonlinear irst order hybrid integrodiferential equations, J. Fixed Point Theory Appl., 18 (2016), 309-326. https://doi.org/10.1007/s11784-015-0279-3 DOI: https://doi.org/10.1007/s11784-015-0279-3

B.C. D HAGE , J.B. D HAGE AND S.B. D HAGE , Approximating existence and uniqueness of solution to a nonlinear IVP of first order ordinary iterative differential equations, Nonlinear Studies, 29 (1) (2022), 303-314.

J.B. D HAGE AND B.C. D HAGE , Approximating local solution of an IVP of nonlinear first order ordinary hybrid differential equations, Nonlinear Studies, 30 (3), 721-732.

J.B. D HAGE , S.B. D HAGE AND B. C. D HAGE , Dhage iteration method for an algorithmic approach to local solution of the nonlinear second order ordinary hybrid differential equations, Electronic J. Math. Anal. Appl., 11 (2) No. 3, (2023), 1-10. https://doi.org/10.21608/ejmaa.2023.191335.1008 DOI: https://doi.org/10.21608/ejmaa.2023.191335.1008

J.B. D HAGE , S.B. D HAGE AND B. C. D HAGE , An algorithmic approach to local solutioon of the

nonlinear second order ordinary hybrid integrodifferential equations, J˜ n¯ an¯ abha, 53 (1) (2023), 277-288.

https://doi.org/10.58250/jnanabha.2023.53133 DOI: https://doi.org/10.58250/jnanabha.2023.53133

J.B. D HAGE , S.B. D HAGE AND B. C. D HAGE , Approximation results or PBVPs of nonlinear first order ordinary functional differential equations in a closed subset of the Banach space, Malaya J. Mat., 11 (S) (2023), 197-207. http://doi.org/10.26637/mjm11S/012 DOI: https://doi.org/10.26637/mjm11S/012

A. G RANAS AND J. D UGUNDJI , Fixed Point Theory, Springer 2003. https://doi.org/10.1007/978-0-387-21593-8 DOI: https://doi.org/10.1007/978-0-387-21593-8

J. H UANG , S. J UNG AND Y. L I , On Hyers-Ulam stability of nonlinear differential equations, Bull. Korean Math. Soc., 52 (2) (2015), 685-697. https://doi.org/10.4134/bkms.2015.52.2.685 DOI: https://doi.org/10.4134/BKMS.2015.52.2.685

V. L AKSHMIKANTHAM AND S. L EELA , Differential and Integral Inequalities, Academic Press, New York, 1969. https://doi.org/10.1016/s0076-5392(08)62290-0 DOI: https://doi.org/10.1016/S0076-5392(08)62290-0

B. L I , Y. Z HANG , X. L I , Z. E SKANDARI AND Q. H E , Bifurcation analysis and complex dynamics of a Kopel triopody model, J. Comput. Appl. Math., 426 (2023), 115089. https://doi.org/10.1016/j.cam.2023.115089 DOI: https://doi.org/10.1016/j.cam.2023.115089

R. L YONS , A.S. V ATSALA AND R.A. C HIQUET , Picard’s itertive method for Caputo fractional differential equations with numerical results, Mathematics, (2017), 5, 65. https://doi.org/10.3390/math5040065 DOI: https://doi.org/10.3390/math5040065

J.I. R AMOS , Picard’s iterative method for nonlinear advection-reaction-diffusion equations, Appl. Math. Comput., 215 (4) (2009), 1526-1536. https://doi.org/10.1016/j.amc.2009.07.004 DOI: https://doi.org/10.1016/j.amc.2009.07.004

K. S HAH , B. A BDALLA , T. A BDELJAWAD AND R. G UL , Analysis of multi-point impulsive problem of fractional order differential equations, Boundary Value Problem, 2023 (1) (2023), 1-17. https://doi.org/10.1186/s13661-022-01688-w DOI: https://doi.org/10.1186/s13661-022-01688-w

H. T EMIMI AND A.R. A NSARI , A new iterative technique for solving nonlinear second order multi-point boundary value problems, Appl. Math. Comput., 218 (4), (2011), 1457-1466. https://doi.org/10.1016/j.amc.2011.06.029 DOI: https://doi.org/10.1016/j.amc.2011.06.029

A.K. T RIPATHY , Hyers-Ulam stability of ordinary differential equations, Chapman and Hall / CRC, London, NY, 2021. https://doi.org/10.1201/9781003120179 DOI: https://doi.org/10.1201/9781003120179

S.Q. W ANG AND J.H. H E , Variational Iteration Method for Solving Integrodifferential Equations, Phy. Lett. A, 367 (3) (2007), 188-191. https://doi.org/10.1016/j.physleta.2007.02.049 DOI: https://doi.org/10.1016/j.physleta.2007.02.049

Metrics

Metrics Loading ...

Published

01-10-2023

How to Cite

Dhage, J., and B. Dhage. “Approximating Local Solution of IVPs of Nonlinear First Order Ordinary Hybrid Integrodifferential Equations:”. Malaya Journal of Matematik, vol. 11, no. 04, Oct. 2023, pp. 344-55, doi:10.26637/mjm1104/002.