The performance of the secant method in the field of \(p\)-adic numbers

Downloads

DOI:

https://doi.org/10.26637/mjm0902/004

Abstract

In this paper, we compute the square roots of \(p\)-adic numbers in \(\mathbb{Q}_{p}\), using the secant method. We also study the performance of this method: the speed of its convergence and the number of iterations necessary to obtain the desired precision \(M\) which represents the number of \(p\)-adic digits in the development of \(\sqrt{a}\).

Keywords:

\(p\)-adic numbers, square roots, secant method, Hensel's lemma, speed of convergence

Mathematics Subject Classification:

26E30, 11E95, 34K28
  • Pages: 28-38
  • Date Published: 01-04-2021
  • Vol. 9 No. 02 (2021): Malaya Journal of Matematik (MJM)

S. ALBEVERIO, A.Y. KHRENNIKOV AND V.M. SHELKOVICH, Theory of p-adic Distributions: Linear and Nonlinear Models, Cambridge University Press, 2010.

https://doi.org/10.1017/CBO9781139107167

F.V. BAJERS, p-adic Numbers, Aalborg University, Department of Mathematical Sciences, 2000.

Y.F. BILU, p-adic Numbers and Diophantine Equations, University of Bordeaux, 2013.

W.A. COPPEL, Number Theory: An Introduction to Mathematics, Springer Science & Business Media, 2009.

https://doi.org/10.1007/978-0-387-89486-7

J.F. EPPERSON, An Introduction to Numerical Methods and Analysis, John Wiley & Sons, 2013.

B. FINE AND G. ROSENBERGER, Number Theory: An Introduction via the Density of Primes, Birkha¨user, 2016.

https://doi.org/10.1007/978-3-319-43875-7

F.Q. GOUVEA, p-adic Numbers: An Introduction, Springer Science & Business Media, 2012.

P.S.P. IGNACIO, J.M. ADDAWE, W.V. ALANGUI AND J.A NABLE, Computation of square and cube roots of p-adic numbers via Newton-Raphson method, J.M.R., 5(2013), 31-38.

https://doi.org/10.5539/jmr.v5n2p31

A. QUARTERONI, R. SACCO AND F. SALERI, Me'thodes Nume'riques: Algorithmes, analyse et applications, Springer Science & Business Media, 2008.

S. KATOK, p-adic Analysis Compared with Real, Vol. 37, American Mathematical Soc, 2007.

https://doi.org/10.1090/stml/037

C.K. KOC¸ , A Tutorial on p-adic Arithmetic, Electrical and Computer Engineering, Oregon State University, Corvallis, Oregon 97331, 2002.

M.P. KNAPP AND C. XENOPHONTOS, Numerical Analysis meets Number Theory: Using root finding methods to calculate inverses mod pn, Appl. Anal. Discrete Math., 4(2010), 23-31.

https://doi.org/10.2298/AADM100201012K

T. ZERZAIHI AND M. KECIES, Computation of the cubic root of a p-adic number, Journal of Mathematics Research, 3(2011), 40-47.

https://doi.org/10.5539/jmr.v3n3p40

T. ZERZAIHI AND M. KECIES, General approach of the root of a p-adic number, Filomat, 27(2013), 431-436.

https://doi.org/10.2298/FIL1303429M

T. ZERZAIHI, M. KECIES AND M.P. KNAPP, Hensel codes of square roots of p-adic numbers, Appl. Anal. Discrete Math., 4(2010), 32-44.

https://doi.org/10.2298/AADM1000009M

  • NA

Metrics

Metrics Loading ...

Published

01-04-2021

How to Cite

Kecies Mohamed. “The Performance of the Secant Method in the Field of \(p\)-Adic Numbers”. Malaya Journal of Matematik, vol. 9, no. 02, Apr. 2021, pp. 28-38, doi:10.26637/mjm0902/004.