Generalized mixed higher order functional equation in various Banach spaces

Downloads

DOI:

https://doi.org/10.26637/mjm1004/002

Abstract

In this article, the we establish the generalized Ulam-Hyers stability of a generalized mixed  \(n^{th} (n+1)^{th}\) order functional equation in various Banach spaces.

Keywords:

Mixed functional equations, Generalized Ulam - Hyers stability, Banach space, Modular Space, Fuzzy Banach space, Random Banach Space

Mathematics Subject Classification:

39B52, 32B72, 32B82
  • Pages: 292-321
  • Date Published: 01-10-2022
  • Vol. 10 No. 04 (2022): Malaya Journal of Matematik (MJM)

J. A CZEL AND J. D HOMBRES , Functional Equations in Several Variables, Cambridge Univ, Press, 1989.

I. A MEMIYA , On the representation of complemented modular lattices, J. Math. Soc. Jpn., 9, 263-279 (1957).

T. Aокі, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66.

M. Arunkumar, C. Devi Shyamala Mary, G. Shobana, Simple AQ And Simple CQ Functional Equations, Journal Of Concrete And Applicable Mathematics (JCAAM), 13, Issue 1/2, Jan - Apr 2015, 120 - 151.

M.Arunkumar, E.Sathya, C. Devi Shyamala Mary, S. Hema Latha, AQ and CQ Functional Equations, Malaya Journal of Matematik, 6, Issue 1, 2018, 182-205.

M. Arunkumar, E.Sathya, C.Pooja, Single Variable Generalized Additive - Quadratic And Generalized Cubic- Quartic Functional Equations In Various Banach Spaces, International Journal of Mathematics And its Applications, 8 (3) (2020), 1-42.

T. Bag, S.K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math., 11 (3) (2003) 687-705.

T. Bag and S.K. Samanta, Fuzzy bounded linear operators, Fuzzy Sets and Systems, 151 (2005) 513-547.

E. Castillo, A. Iglesias and R. Rulz-coho, Functional Equations in Applied Sciences, Elsevier, B.V.Amslerdam, 2005.

S.C. Cheng And J.N. Mordeson, Fuzzy linear operator and fuzzy normed linear spaces, Bull. Calcutta Math. Soc., 86 (1994) 429-436.

S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, River Edge, NJ, 2002.

H. FASt, Sur la convergence statistique, Colloq Math., 2 (1951), 241-244.

JA. FRIDY, On statistical convergence, Analysis., 5 (1985), 301-313.

P. GăVRUTă, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, $J$. Math. Anal. Appl., 184 (1994), no. 3, 431-436.

O. Hadzic and E. Pap, Fixed Point Theory in Probabilistic Metric Spaces, vol. 536 of Mathematics and Its Applications, Kluwer Academic, Dordrecht, The Netherlands, 2001.

O. Hadzic, E. PAP And M. Budincevic, Countable extension of triangular norms and their applications to the fixed point theory in probabilistic metric spaces, Kybernetika, 38 3, pp. (2002), 363-82.

D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci., U. S. A. 27 (1941), 222-224.

J.L.W.V. JEnSEn, Sur les fonctions convexes et les inegalities entre les valeurs myennes, Acta Math., 30, (1965), 179-193.

S.M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, 2001.

Pl. Kannappan, Functional Equations and Inequalities with Applications, Springer Monographs in Mathematics, 2009.

S. KaraKus, Statistical convergence on probabilistic normed spaces, Math Commun., 12 (2007) 11-23.

H. M. KIm, H. Y. Shin, Refined stability of additive and quadratic functional equations in modular spaces, Journal of Inequalities and Applications, (2017), 2017:146. DOI 10.1186/s13660-017-1422-z.

M.A. KHAmsi , Quasicontraction mappings in modular spaces without $Delta_2-$ condition, Fixed Point Theory Appl., Article ID 916187 (2008).

E. Kolк, The statistical convergence in Banach spaces, Tartu Ul Toime., 928, (1991), 41-52.

S. Koshi, T. Shimogaki, On F-norms of quasi-modular spaces, J. Fac. Sci., Hokkaido Univ. Ser., 1 15, (1961), 202-218.

M. Krbec, Modular interpolation spaces, I. Z. Anal. Anwend., 1, (1982), 25-40 .

W.A. Luxemburg, Banach function spaces, PhD thesis, Delft University of Technology, Delft, The Netherlands (1959).

L. Maligranda, Orlicz Spaces and Interpolation, Seminários de Mathemática, 5. Universidade Estadual de Campinas, Departamento de Matemática, Campinas (1989).

B. Mazur, Modular curves and the Eisenstein ideal, Publ. Math. IHES, 47, (1978), 33-186.

A. K. Mirmostafaee, M. S. Moslehian, Fuzzy versions of Hyers-Ulam-Rassias theorem, Fuzzy Sets and Systems, 159, no. 6, (2008), 720-729.

A. K. Mirmostafaee, M. Mirzavaziri, M. S. Moslehian, Fuzzy stability of the Jensen functional equation, Fuzzy Sets and Systems, 159, no. 6, (2008), 730-738.

A. K. Mirmostafaee, M. S. Moslehian, Fuzzy approximately cubic mappings, Information Sciences, 178 no. 19, (2008), 3791-3798.

A. K. Mirmostafaee, M. S. Moslehian, Fuzzy almost quadratic functions, Results in Mathematics, 52, no. 1-2, (2008), 161-177.

J. Musielak Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics, 1034, Springer, Berlin (1983).

M. Mursaleen, $lambda$-statistical convergence, Math. Slovaca, 50 (2000), 111-115 .

M. Mursaleen, S. A. Mohiuddine, On lacunary statistical convergence with respect to the intuitionistic fuzzy normed space, J. Comput. Anal. Math., 233 ,(2009), 142-149. doi:10.1016/j.cam.2009.07.005

H. Nakano, Modulared Semi-Ordered Linear Spaces, Maruzen, Tokyo (1950).

W. OrLICz, Collected Papers, vols. I, II. PWN, Warszawa, (1988).

J. M. RAssias, On approximation of approximately linear mappings by linear mappings, J. Funct. Anal., 46 (1982), no. 1, 126-130.

TH. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), no. 2, 297-300.

Th.M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Acedamic Publishers, Dordrecht, Bostan London, 2003.

K. Ravi, M. Arunkumar and J.M. Rassias, On the Ulam stability for the orthogonally general EulerLagrange type functional equation, International Journal of Mathematical Sciences, Autumn 2008 3, No. $08,36-47$.

P. K. Sahoo, Pl. Kannappan, Introduction to Functional Equations, Chapman and Hall/CRC Taylor and Francis Group, 2011.

T. SALAT, On the statistically convergent sequences of real numbers, Math Slovaca., 30, (1980), 139-150.

G. SADEGHI, A fixed point approach to stability of functional equations in modular spaces, Bull. Malays. Math. Sci. Soc., 37 (2), (2014), 333-344.

B. Schweizer and A. SkLar, Probabilistic Metric Spaces, Elsevier, North Holand, New York, 1983.

A.N. ŠERSTNEv, On the notion of a random normed space, Dokl Akad Nauk SSSR, 149, (1963), 280283.

H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq Math., 2, (1951), 73-34.

P. TURPIN, Fubini inequalities and bounded multiplier property in generalized modular spaces, Comment. Math., 1, (1978), 331-353.

S. M. Ulam, Problems in modern mathematics, Science Editions John Wiley & Sons, Inc., New York, 1964.

A. WilanSky, Modern Methods in Topological Vector Space, McGraw-Hill International Book Co., New York (1978).

K. Wongkum, P. Chaipunya, P. Kumam, On the generalized Ulam-Hyers-Rassias stability of quadratic mappings in modular spaces without $Delta_2$ conditions, J. Funct. Spaces, Article ID 461719 (2015).

K. Wongkum, P. Kumam, Y.J. Cho, P. Chaipunya, On the generalized Ulam-Hyers-Rassias stability for quartic functional equation in modular spaces, J. Nonlinear Sci. Appl. 10, (2017), 1399-1406 .

J. Z. Xiao, X. H. Zhu, Fuzzy normed spaces of operators and its completeness, Fuzzy Sets and Systems, 133, (2003) 389-399.

S. Yamamuro, On conjugate spaces of Nakano spaces, Trans. Am. Math. Soc. , 90, (1959), 291-311.

  • NA

Metrics

Metrics Loading ...

Published

01-10-2022

How to Cite

E. Sathya, and M. Arunkumar. “Generalized Mixed Higher Order Functional Equation in Various Banach Spaces”. Malaya Journal of Matematik, vol. 10, no. 04, Oct. 2022, pp. 292-21, doi:10.26637/mjm1004/002.