Cone \(S\)-metric spaces and some new fixed point results for contractive mapping satisfying \(\phi\)-maps with implicit relation
Downloads
DOI:
https://doi.org/10.26637/mjm1004/006Abstract
In this article, we use implicit relations to establish some new fixed point results in the setting of cone \(S\)-Metric spaces for \(\phi\)-map type contractive conditions. An example is provided to support our results. Our results extend, unify, and generalize several results from the current literature. In particular, the results presented in this paper improve and generalize the corresponding results of Sedghi and Dung[8], which used the ideas of Saluja, G. S. [19].
Keywords:
Cone metric spce, Fixed point, Unique fixed point, Implicit relation, Cone \(S\)- mtric spaceMathematics Subject Classification:
47H10, 54H25- Pages: 354-363
- Date Published: 01-10-2022
- Vol. 10 No. 04 (2022): Malaya Journal of Matematik (MJM)
S. B ANACH , Sur les operations dens les ensembles abstraits el leur application aux equations integrales, Fundam. Math., 3(1922),133–181.
L. G. Huang And X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 64(3)(2012), 1468-1476.
S. Sedghi, N. Shobe and A. Aliouche, A generalization of fixed point theorems in S metric spaces, Mat. Vesnik, 64(3)(2012), 258-266.
J. K. Kim,Sedghi and N. Shokolaei, Common fixed point theorems for R -weakly commuting mappings in S -metric spaces, J. Comput. Anal. Appl., 19(4)(2015), 751-759.
N. V. DUng , N.T. HIE ANd RAdoJEvic, Fixed point theorems for g -monotone maps on partially ordered S -metric spaces, Filomat., 28(9)(2014),1885-1898.
N. Y. Ozgur and N. Tas, Some fixed point theorems on S -metric spaces, Mat. Vesnik, 69(1)(2017),3952.39-52.
M. U. RAHMAN AND M. SARWAR, fixed point resultss of Altman integral type mappings in S-metric spaces Int. J. Anal. Appl, 10(1)(2016), 58-63.
S. SËDhGi and N.V. Ḑung, Fixed point theorems on S -metric spaces, Mat. Vesnik, 66(1)(2014), 113-124.
S. SË DHGI , N. Ş̧OBE and T.Ḑesenovic, Fixed point results in S -metric spaces Non linear Funct. Anal. Appl. ,20(1)(2015), 55-67.
S.S̈Edghi, M.M. RȩZaee,T. DȩSenovic and S.Ŗadenovic, Common Fixed point theorems for contractive mappings $Phi$ maps in S -metric spaces, Act. Uni. Sapietiae. Math.,8(2)(2016) 298-311.
D. Dhamodharan, and R. K̆rishnakumar, Cone S -metric space and Fixed point theorems of contractive mappings, Anal. of Pure Appl. Math. , 14(2)(2017), 237-243.
V. Berinde and F. Vetro,, Common fixed point of mappings satisfying implicit contractive conditions, Fixed point theory. Appl., 2012(105)(2012), 8page.
V. BERINDE, Approximating fixed points of implicit almost contractions, Hacet J. Math. Stat., 41(1)(2012), $93-102$.
M. Imdad, S. Kumar and M. S. Khan, Remarks on some fixed point theorems satisfying implicit relations, Rad. Mat., 11(1)(2002), 135-143.
V. Popa, Fixed point theorems for implicit contractive mappings, Stud. Cercet. Stint. Ser. Math. Univ. Bacau., 7(1999), 127-133.
V. POPA, On some fixed point theorems for compatible mappings satisfying an implicit relation, Demostr. Math., 32(1)(1999), 157-163.
V. POPA,, A general fixed point theorem for four weakly compatible mappings satisfying an implicit relation, Filomat., 19(2005), 45-51.
V. POPA AND A. M. PAtRiCiU̧, A general fixed point theorem for pairs weakly compatible mappings in Gmetric spaces, J. Nonlinear Sci. Appl., 5(2)(2012), 151-160.
G. S. SaluJa, Fixed point theorems on cone S-metric spaces using implicit relation, CUBO, A Math. J. , 22(2)(2020), 273-289.
J. S. Vandergraft, Newtons method for convex operators in partially ordered spaces, SIAM. J. Numer. Anal., 4(1967), 406-432.
K. Deimling, Nonlinear functional analysis, Springer-Verlag.Berlin, , (1985).
Sh. REZAPours, Some notes on the paper-" cone metric space and Fixed point theorems contractive mapping, J. Math. Anal. Appl. ., 345(2)(2008), 719-724.
N. TAŞ AND Y. OZgurs, New generalized Fixed point results on cone $S_b$-metric spaces using implicit relation, Bull. Calcutta Math. Soc[Math.g.], 17apr. 2017.
J. MAtKowskI , Fixed point theorems for mappings with a contractive iterate at a point, Proc. Amer. Math. Soc.., 62(1977),344-348.
G. E. Hardy̧ ANd T. D. RögERs, A Generalization of a Fixed point theorems of Reich, Canad. Math. Bull. 16,(1973), 7201-7206.
S. REICH, Some remarks concerning, contraction mappings,, Canad. Math. Bull., 14(1971), 7121-7124.
R. Kannan, Some results on Fixed point theorems, Bull.calcutta,Math.Soc., 60(2)(1969), 71-78.
- NA
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Surendra Kumar Tiwari, MRIDUSMITA Gauratra, Vishnu Narayan Mishra
This work is licensed under a Creative Commons Attribution 4.0 International License.