Existence results for \(\psi\)-Caputo hybrid fractional integro-differential equations

Downloads

DOI:

https://doi.org/10.26637/mjm0902/006

Abstract

In this paper, we study the existence of solutions for hybrid fractional integro-differential equations involving \(\psi\)-Caputo derivative. We use an hybrid fixed point theorem for a sum of three operators due to Dhage for proving the main results. An example is provided to illustrate main results.

Keywords:

Fractional order differential equations, multi-term time fractional derivative, fractional impulsive conditions, fractional order integral boundary conditions

Mathematics Subject Classification:

34A08 , 26A33 , 34A34
  • Naas Adjimi Laboratory of Mathematics and Applied Sciences. University of Ghardaia, 47000, Algeria.
  • Maamar Benbachir Faculty of Sciences, Saad Dahlab University, Blida 1, Algeria.
  • Kaddour Guerbati Laboratory of Mathematics and Applied Sciences. University of Ghardaia, 47000, Algeria.
  • Pages: 46-54
  • Date Published: 01-04-2021
  • Vol. 9 No. 02 (2021): Malaya Journal of Matematik (MJM)

M.I. ABBAS, Existence results for Hadamard and Riemann-Liouville functional fractional neutral integrodifferential equations and finite delay, Filomat, 32(13) (2018), 4611-4618.

https://doi.org/10.2298/FIL1813611A

S. ABBAS, M. BENCHOHRA AND G. M. N'GUE'RE'KATA, Topics in Fractional Differential Equations, Developments in Mathematics, 27, Springer, New York, 2012.

https://doi.org/10.1007/978-1-4614-4036-9

S. ABBAS, M. BENCHOHRA AND G. M. N'GUEREKATA, Advanced Fractional Differential and Integral Equations, Mathematics Research Developments, Nova Science Publishers, Inc., New York, 2015.

S. ABBAS, M. BENCHOHRA, J. R. GRAEF AND J. HENDERSON, Implicit Fractional Differential and Integral Equations, De Gruyter Series in Nonlinear Analysis and Applications, 26, De Gruyter, Berlin, 2018.

https://doi.org/10.1515/9783110553819

N. ADJIMI AND M. BENBACHIR, Katugampola fractional differential equation with Erdelyi-Kober integral boundary conditions, Advances in the Theory of Nonlinear Analysis and its Applications, 5(2)(2021), 215- 228.

https://doi.org/10.31197/atnaa.711191

R.P. AGARWAL, M. BENCHOHRA AND S. HAMANI, A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Appl. Math., 109(3)(2010), 973-1033.

https://doi.org/10.1007/s10440-008-9356-6

R. ALMEIDA, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 44(2017), 460-481.

https://doi.org/10.1016/j.cnsns.2016.09.006

R. ALMEIDA, Functional differential equations involving the ψ-Caputo fractional derivative, Fractal and Fractional, 4(2)(2020), 1-10.

https://doi.org/10.3390/fractalfract4020029

A. BOUTIARA, M.S. ABDO AND M. BENBACHIR, Existence results for ψ- Caputo fractional neutral functional integro-differential equations with finite delay, Turk. J. Math., 44(2020), 2380-2401.

https://doi.org/10.3906/mat-2010-9

C. DERBAZI, Z. BAITICHE, M. BENCHOHRA AND A. CABADA, Initial value problem for nonlinear fractional differential equations with ψ-Caputo derivative via Monotone iterative technique, axioms 2020, 9, 57.

https://doi.org/10.3390/axioms9020057

R. HILFER, Applications of Fractional Calculus in Physics, World Scientific Publishing Co., Inc., River Edge, NJ, 2000.

https://doi.org/10.1142/3779

A.A. KILBAS, H.M. SRIVASTAVA AND J.J. TRUJILLO, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam, 2006.

M.M. MATAR, Existence of solution for fractional Neutral hybrid differential equations with finite delay, Rocky Mountain Journal of Mathematics, 50(6)(2020), 2141-2148.

https://doi.org/10.1216/rmj.2020.50.2141

A.U.K. NIAZI, J. WEI, M. UR REHMAN AND D. JUN, Existence results for hybrid fractional neutral differential equations, Adv. Difference Equ., 2017, Paper No. 353, 11 pp.

https://doi.org/10.1186/s13662-017-1407-8

I. PODLUBNY, Fractional Differential Equations, Mathematics in Science and Engineering, 198, Academic Press, Inc., San Diego, CA, 1999.

F. SI BACHIR, S. ABBAS, M. BENBACHIR, MOUFFAK BENCHOHRA AND G.M. N'GUE'RE'KATA, Existence and attractivity results for ψ-Hilfer hybrid fractional differential equations, CUBO, 23(1)(2021), 145-159.

https://doi.org/10.4067/S0719-06462021000100145

V. E. TARASOV, Fractional Dynamics, Nonlinear Physical Science, Springer, Heidelberg, 2010.

https://doi.org/10.1007/978-3-642-14003-7

J. VANTERLER DA C. SOUSA AND E. CAPELAS DE OLIVEIRA, On the ψ-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 60(2018), 72-91.

https://doi.org/10.1016/j.cnsns.2018.01.005

Y. ZHOU, Basic Theory of Fractional Differential Equations, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2014.

https://doi.org/10.1142/9069

Y. ZHOU, Fractional Evolution Equations and Inclusions: Analysis and Control, Elsevier/Academic Press, London, 2016.

https://doi.org/10.1016/B978-0-12-804277-9.50002-X

  • NA

Metrics

Metrics Loading ...

Published

01-04-2021

How to Cite

Naas Adjimi, Maamar Benbachir, and Kaddour Guerbati. “Existence Results for \(\psi\)-Caputo Hybrid Fractional Integro-Differential Equations”. Malaya Journal of Matematik, vol. 9, no. 02, Apr. 2021, pp. 46-54, doi:10.26637/mjm0902/006.