A new hybrid algorithm for maximum likelihood estimation in a model of accident frequencies

Downloads

DOI:

https://doi.org/10.26637/mjm1101/002

Abstract

In this paper, we are interested in the numerical computation of the constrained maximum likelihood estimator (MLE) of the parameter vector of a discrete statistical model used in statistics applied to road safety. The parameter vector is divided into two blocks: one block with the parameter of interest and the second block with secondary parameters. The MLE is the solution to a system of non-linear implicit equations difficult to solve in closed-form. To overcome this difficulty, we propose a hybrid algorithm (HA) mixing the use of a one-dimensional Newton-Raphson (NR) algorithm for the first equation of the system and a fixed-point strategy for the remaining equations. Our proposed algorithm involves no matrix inversion but it partially enjoys the quadratic convergence rate of the one-dimensional NR algorithm. We illustrate its performance on simulated data and we compare it to Newton-Raphson (NR) and quasi-Newton algorithms which are two of the most used optimization algorithms. The results suggest that our HA outperforms NR and quasi-Newton algorithms. It is accurate and converges quickly for all the starting values.

Keywords:

Statistical model, maximum likelihood, parameter estimation, road safety, Kullback-Leibler divergence

Mathematics Subject Classification:

62F10, 62F30, 62H10, 62H12, 62P99
  • Issa Cherif GERALDO Laboratoire d’Analyse, de Modélisations Mathématiques et Applications (LAMMA), Département de Mathématiques, Faculté des Sciences, Université de Lomé, 1 B.P. 1515 Lomé 1, Togo.
  • Tchilabalo Abozou KPANZOU Département de Mathématiques, Faculté des Sciences et Techniques, Université de Kara, Kara, Togo.
  • Edoh KATCHEKPELE Laboratoire de Modélisation Mathématique et d’Analyse Statistique Décisionnelle (LaMMASD), Département de Mathématiques, Faculté des Sciences et Techniques, Université de Kara, Kara, Togo.
  • Pages: 11-24
  • Date Published: 01-01-2023
  • Vol. 11 No. 01 (2023): Malaya Journal of Matematik (MJM)

J. F. Bonnans, J. C. Gilbert, C. Lemaréchal and C. Sagastizábal, Numerical Optimization Theoretical and Practical Aspects, Springer Verlag, Berlin, (2006).

A. R. Conn, K. ScheInberg And L. N. ViCEnte, Introduction to Derivative-Free Optimization, MPS-SIAM Book Series on Optimization. SIAM, Philadelphia, (2009).

B. P. Demidovich and I. A. Maron, Computational Mathematics. MIR Publishers, Moscow, (1981).

J. E. DEnNiS JR AND R. B. SCHnABEL, Numerical methods for unconstrained optimization and nonlinear equations, SIAM, Philadelphia, (1996).

J. Ding, G. L. TiAn And K. C. YuEn, A new MM algorithm for constrained estimation in the proportional hazards model, Comput. Statist. Data Anal., 84(2015), 135-151.

I. C. Geraldo, An Automated Profile-Likelihood-Based Algorithm for Fast Computation of the Maximum Likelihood Estimate in a Statistical Model for Crash Data, J. Appl. Math., 2022(2022), Article ID 6974166, $11 mathrm{p}$.

I. C. GERALdo, On the maximum likelihood estimator for a discrete multivariate crash frequencies model, Afr. Stat., 15(2)(2020), 2335-2348.

I. C. Geraldo And T. A. Kpanzou, Theoretical and empirical comparison of two discrete statistical models of crash frequencies, Malaya J. Mat., 10(04)(2022), 322-335.

I. C. Geraldo, A. N'Guessan and K. E. GNeyou, A note on the strong consistency of a constrained maximum likelihood estimator used in crash data modeling, C. R. Math. Acad. Sci. Paris, 353(12)(2015), $1147-1152$.

I. C. Geraldo, A. N'Guessan and K. E. Gneyou, Global convergence and ascent property of a cyclic algorithm used for statistical analysis of crash data, Afr. Stat., 13(2)(2018), 1631-1643.

I. GrIVA, S. G. NASH, AND A. SOFEr, Linear and Nonlinear Optimization, Society for Industrial and Applied Mathematics, Philadelphia, 2nd edition, (2009).

R. K. GuPtA, Numerical methods: Fundamentals and applications, Cambridge University Press, New Delhi, (2019).

B. Hasselman, nleqslv: Solve Systems of Nonlinear Equations, URL https://CRAN.R-project. org/package=nleqslv, R package version 3.3.2., (2018).

D. R. Hunter, MM algorithms for generalized Bradley-Terry models, Ann. Statist., 32(1)(2004), 384-406.

D. R. Hunter And R. Li, Variable Selection using MM Algorithms, Ann. Statist., 33(4)(2005), 1617-1642.

D. R. Hunter and K. Lange, A tutorial on MM algorithms, Amer. Statist., 58(1)(2004), 30-37.

J. JAMEs, MM algorithm for general mixed multinomial logit models, J. Appl. Econometrics, 32(4)(2017), $841-857$.

M. J. Kochenderfer and T. A. Wheeler, Algorithms for optimization, The MIT Press, Cambridge (Massachusetts), (2019).

K. LANGe, Optimization, Springer, New York, 2nd edition, (2013).

K. LANGE, MM optimization algorithms, SIAM, Philadelphia, (2016).

K. Lange, E. C. ChI, And H. Zhou, A brief survey of modern optimization for statisticians, Int. Stat. Rev., 82(1)(2014), 46-70.

K. Lange, D. R. Hunter And I. YANG, Optimization transfer using surrogate objective functions, J. Comput. Graph. Statist., 9(1)(2000), 1-20.

J. Larson, M. Menickelly, and S. M. Wild, Derivative-free optimization methods, Acta Numer, 28(2019), $287-404$.

S. Lee and J. Z. HuAng, A coordinate descent MM algorithm for fast computation of sparse logistic PCA, Comput. Statist. Data Anal., 62(2013), 26-38.

A. MKHadri, A. N'GuesSan ANd B. HAFIDI, An MM algorithm for constrained estimation in a road safety measure modeling, Comm. Statist. Simulation Comput., 39(5)(2010), 1057-1071.

J. F. Monahan, Numerical Methods of Statistics, Cambridge University Press, 2nd edition, (2011).

A. N'Guessan, Analytical existence of solutions to a system of nonlinear equations with application, $J$. Comput. Appl. Math., 234(1)(2010), 297-304.

A. N'Guessan and F. Bellavance, A confidence interval estimation problem using Schur complement approach, C. R. Math. Rep. Acad. Sci. Canada, 27(3)(2005), 84-91.

A. N'Guessan and I. C. Geraldo, A cyclic algorithm for maximum likelihood estimation using Schur complement, Numer. Linear Algebra Appl., 22(6)(2015), 1161-1179.

A. N'Guessan and C. Langrand, A covariance components estimation procedure when modelling a road safety measure in terms of linear constraints, Statistics, 39(4)(2005), 303-314.

A. N'GuEssan And C. Langrand, A Schur complement approach for computing subcovariance matrices arising in a road safety measure modelling. J. Comput. Appl. Math., 177(2)(2005), 331-345.

A. N'GUESSAN AND M. TRUFFIER, Impact d'un aménagement de sécurité routière sur la gravité des accidents de la route, $J$. $S F d S, mathbf{4 9}(2008)$, 23-41.

A. N'guessan, A. Essai And C. Langrand, Estimation multidimensionnelle des contrôles et de l'effet moyen d'une mesure de sécurité routière, Revue de statistique appliquée, 49(2)(2001), 85-102.

A. N'Guessan, A. EssAI AND M. N'Zi, An estimation method of the average effect and the different accident risks when modelling a road safety measure: A simulation study, Comput. Statist. Data Anal., 51(2)(2006), 1260-1277.

J. Nocedal and S. J. Wright, Numerical optimization, Springer, second edition, (2006).

R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, URL https://www.R-project.org/, (2022).

L. M. Rios AND N. V. SAHINIDIS, Derivative-free optimization: a review of algorithms and comparison of software implementations, J. Global Optim., 56(3)(2013), 1247-1293.

R. VARAdhan, alabama: Constrained Nonlinear Optimization, URL https://CRAN.R-project. org/package=alabama, R package version 2015.3-1, (2015).

H. Zhou And K. Lange, MM algorithms for some discrete multivariate distributions, J. Comput. Graph. Statist., 19(3)(2010), 645-665.

  • NA

Metrics

Metrics Loading ...

Published

01-01-2023

How to Cite

GERALDO, I. C. ., T. A. . KPANZOU, and E. . KATCHEKPELE. “A New Hybrid Algorithm for Maximum Likelihood Estimation in a Model of Accident Frequencies”. Malaya Journal of Matematik, vol. 11, no. 01, Jan. 2023, pp. 11-24, doi:10.26637/mjm1101/002.