On nearly Ricci recurrent manifolds

Downloads

DOI:

https://doi.org/10.26637/mjm0902/007

Abstract

The object of the present paper is to introduce a new type of Ricci recurrent manifold called nearly Ricci recurrent manifold . Some geometric properties of nearly Ricci recurrent manifold have been studied. Finally we give an example of nearly Ricci recurrent manifold.

Keywords:

Nearly Ricci recurrent manifold, Constant scalar curvature tensor, Conformally flat manifold

Mathematics Subject Classification:

53C15 , 53C25
  • B. Prasad Department of Mathematics, S.M.M.T.P.G. College, Ballia-277001, U.P., India.
  • R.P.S. Yadav Department of Mathematics, S.M.M.T.P.G. College, Ballia-277001, U.P., India.
  • Pages: 55-63
  • Date Published: 01-04-2021
  • Vol. 9 No. 02 (2021): Malaya Journal of Matematik (MJM)

W. ROTER, On Conformally symmetric Ricci recurrent spaces, Colloquium Mathematicum., 31(1974), 87- 96.

https://doi.org/10.4064/cm-31-1-87-96

E.M. PAATTERSON, Some theorem on Ricci-recurrent space, J. London. Math. Soc., 27(1952), 287-295.

https://doi.org/10.1112/jlms/s1-27.3.287

M.C. CHAKI, Some theorem on recurrent and Ricci recurrent spaces, Rendicoti Seminario Math. Della universita Di Padova, 26(1956), 168-176.

N. PRAKASH , A note on Ricci recurrent and recurrent spaces, Bull. Cal.Math. Society., 54(1962), 1-7.

S.YAMAGUCHI AND M. MATSUMOTO, On Ricci recurrent spaces, Tensor, N.S., 19(1968), 64-68.

U.C. DE, N. GUHA AND D. KAMILYA, On generalized Ricci recurrent manifolds, Tensor (N.S.), 6(1995), 312-317.

U.C. DE AND N. GUHA , On generalized recurrent manifolds, National Academy of Math. India, 9(1991), 85-92.

H.S.RUSE, A classification of K∗-spaces, London Math. Soc., 53(1951), 212-229.

https://doi.org/10.1112/plms/s2-53.3.212

A. G. WALKER, On Ruse's space of recurrent curvature,Proc. of London Math. Soc.,52(1950), 36-54.

https://doi.org/10.1112/plms/s2-52.1.36

K. Arslan, U.C. De, C. Murathan and A. Yildiz, On generalized recurrent Riemannian manifolds, Acta Math. Hungar, 123(1-2)(2009), 27-39.

https://doi.org/10.1007/s10474-008-8049-y

A.A. SHAIKH AND A. PATRA, On a generalized class of recurrent manifolds, ARCHIVUM MATHEMATICUM (BRNO) Tomus, 46(2010), 71-78.

S. MALLICK, A. DE AND U.C. DE, On Generalized Ricci Recurrent Manifolds with Applications To Relativity, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci., 83(2)(2013), 143-152.

https://doi.org/10.1007/s40010-013-0065-9

V.J. KHAIRNAR, On generalized recurrent and Ricci recurrent Lorentzian Trans Sasakian manifolds, IOSR J. Math. (IOSR-JM), 10(4) Ver.I(2014), 38-43.

https://doi.org/10.9790/5728-10413843

A.A. SHAIKH, D.G. PRAKASHA AND H. AHMAD, On generalized φ-recurrent LP-Sasakian manifolds, Journal of E. Math., Soc., 23(2015), 161-166.

R. KUMAR, J.P. SINGH AND J. CHOWDHURY, On generalized Ricci recurrent LP-Sasakian manifolds, Journal of Mathematics and Computer science, 14(2015), 205-210.

https://doi.org/10.22436/jmcs.014.03.03

S.K. HUIL, On generalized φ-recurrent generalized (k µ) contact metric manifolds, arXiv Math., D.G., 11(2017), 1-10.

J.P. SINGH S.D. MAYANGLAMBAM, On extended generalized φ-recurrent LP-Sasakian manifolds, Global Journal of Pure and Applied Mathematics, 13(2017), 5551-5563.

A. SINGH AND S. KISHOR , Generalized recurrent and generalized Ricci recurrent Sasakian space forms, P.J. Math., 9(2)(2020), 866-873.

B.PRASAD AND R.P.S. YADAV, On Nearly recurrent Riemannian manifolds, Communicated for publication.

L.P. EISENHERT, Riemannian Geometry, Princeton University Press, Princetone, N.J. (1949).

  • NA

Metrics

Metrics Loading ...

Published

01-04-2021

How to Cite

B. Prasad, and R.P.S. Yadav. “On Nearly Ricci Recurrent Manifolds”. Malaya Journal of Matematik, vol. 9, no. 02, Apr. 2021, pp. 55-63, doi:10.26637/mjm0902/007.