On nearly Ricci recurrent manifolds
Downloads
DOI:
https://doi.org/10.26637/mjm0902/007Abstract
The object of the present paper is to introduce a new type of Ricci recurrent manifold called nearly Ricci recurrent manifold . Some geometric properties of nearly Ricci recurrent manifold have been studied. Finally we give an example of nearly Ricci recurrent manifold.
Keywords:
Nearly Ricci recurrent manifold, Constant scalar curvature tensor, Conformally flat manifoldMathematics Subject Classification:
53C15 , 53C25- Pages: 55-63
- Date Published: 01-04-2021
- Vol. 9 No. 02 (2021): Malaya Journal of Matematik (MJM)
W. ROTER, On Conformally symmetric Ricci recurrent spaces, Colloquium Mathematicum., 31(1974), 87- 96.
https://doi.org/10.4064/cm-31-1-87-96
E.M. PAATTERSON, Some theorem on Ricci-recurrent space, J. London. Math. Soc., 27(1952), 287-295.
https://doi.org/10.1112/jlms/s1-27.3.287
M.C. CHAKI, Some theorem on recurrent and Ricci recurrent spaces, Rendicoti Seminario Math. Della universita Di Padova, 26(1956), 168-176.
N. PRAKASH , A note on Ricci recurrent and recurrent spaces, Bull. Cal.Math. Society., 54(1962), 1-7.
S.YAMAGUCHI AND M. MATSUMOTO, On Ricci recurrent spaces, Tensor, N.S., 19(1968), 64-68.
U.C. DE, N. GUHA AND D. KAMILYA, On generalized Ricci recurrent manifolds, Tensor (N.S.), 6(1995), 312-317.
U.C. DE AND N. GUHA , On generalized recurrent manifolds, National Academy of Math. India, 9(1991), 85-92.
H.S.RUSE, A classification of K∗-spaces, London Math. Soc., 53(1951), 212-229.
https://doi.org/10.1112/plms/s2-53.3.212
A. G. WALKER, On Ruse's space of recurrent curvature,Proc. of London Math. Soc.,52(1950), 36-54.
https://doi.org/10.1112/plms/s2-52.1.36
K. Arslan, U.C. De, C. Murathan and A. Yildiz, On generalized recurrent Riemannian manifolds, Acta Math. Hungar, 123(1-2)(2009), 27-39.
https://doi.org/10.1007/s10474-008-8049-y
A.A. SHAIKH AND A. PATRA, On a generalized class of recurrent manifolds, ARCHIVUM MATHEMATICUM (BRNO) Tomus, 46(2010), 71-78.
S. MALLICK, A. DE AND U.C. DE, On Generalized Ricci Recurrent Manifolds with Applications To Relativity, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci., 83(2)(2013), 143-152.
https://doi.org/10.1007/s40010-013-0065-9
V.J. KHAIRNAR, On generalized recurrent and Ricci recurrent Lorentzian Trans Sasakian manifolds, IOSR J. Math. (IOSR-JM), 10(4) Ver.I(2014), 38-43.
https://doi.org/10.9790/5728-10413843
A.A. SHAIKH, D.G. PRAKASHA AND H. AHMAD, On generalized φ-recurrent LP-Sasakian manifolds, Journal of E. Math., Soc., 23(2015), 161-166.
R. KUMAR, J.P. SINGH AND J. CHOWDHURY, On generalized Ricci recurrent LP-Sasakian manifolds, Journal of Mathematics and Computer science, 14(2015), 205-210.
https://doi.org/10.22436/jmcs.014.03.03
S.K. HUIL, On generalized φ-recurrent generalized (k µ) contact metric manifolds, arXiv Math., D.G., 11(2017), 1-10.
J.P. SINGH S.D. MAYANGLAMBAM, On extended generalized φ-recurrent LP-Sasakian manifolds, Global Journal of Pure and Applied Mathematics, 13(2017), 5551-5563.
A. SINGH AND S. KISHOR , Generalized recurrent and generalized Ricci recurrent Sasakian space forms, P.J. Math., 9(2)(2020), 866-873.
B.PRASAD AND R.P.S. YADAV, On Nearly recurrent Riemannian manifolds, Communicated for publication.
L.P. EISENHERT, Riemannian Geometry, Princeton University Press, Princetone, N.J. (1949).
- NA
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 B. Prasad, R.P.S. Yadav
This work is licensed under a Creative Commons Attribution 4.0 International License.