On solutions of the Diophantine equation \(L_n\pm L_m=p^a\)
Downloads
DOI:
https://doi.org/10.26637/mjm1103/006Abstract
Lucas sequence is one of the most studied binary recurrence sequence defined by the relation \(L_{n+2}=L_{n+1}+L_n;~L_0=2, L_1=1\). In this paper, we investigate all the sums and differences of two Lucas numbers that are powers of a odd prime \(p\) satisfying \(p<10^3\).
Keywords:
Fibonacci numbers, Lucas numbers, linear forms in logarithms, Baker's method, reduction methodMathematics Subject Classification:
11B39, 11D72, 11J86- Pages: 294-302
- Date Published: 01-07-2023
- Vol. 11 No. 03 (2023): Malaya Journal of Matematik (MJM)
A. BAKER AND G. WuSTHOLZ, Logarithmic and Diophantine geometry, New Mathematical Monographs (Cambridge University Press), 9 (2007). DOI: https://doi.org/10.1017/CBO9780511542862
A. Baker AND H. DavenPort, The equations $3 x^2-2=y^2$ and $8 x^2-7=z^2$, Quart. J. Math. Oxford Ser., 20 (1969), 129-137. DOI: https://doi.org/10.1093/qmath/20.1.129
J.J. Bravo and F. Lucas, Powers of Two as Sums of Two Lucas Numbers, J. Int. Seq., 17 (2014). DOI: https://doi.org/10.18514/MMN.2016.1505
J.J. Bravo and F. Luca, On the Diophantine Equation $F_n+F_m=2^a$, Quaest. Math., 39 (3) (2016), $391-400$. DOI: https://doi.org/10.2989/16073606.2015.1070377
Y. Bugeaud, M. Mignotte And S. SiKseK Classical and modular approaches to exponential Diophantine equatiuons. I. Fibonacci and Lucas perfect powers, Ann. of Math. 163 (2006), 969-1018. DOI: https://doi.org/10.4007/annals.2006.163.969
D. Bitim AnD R. Keskin, On solutions of the Diophantine equation $F_n-F_m=3^a$, Proc.Indian Acad. Sci. Math. Sci. 129 (81) (2019). DOI: https://doi.org/10.1007/s12044-019-0524-6
A. Dujella and A. Petho A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser. 49 (1998), 195, 291-306. DOI: https://doi.org/10.1093/qjmath/49.195.291
F. ERduvAn AND R. KeSKIN Nonnegative integer solutions of the equation $F_n-F_m=5^a$, Turk. J. Math. 43 (2019), 115-1123. DOI: https://doi.org/10.3906/mat-1810-83
M. Laurent, M. Mignotte and Y. Nesterenko Formes lineaires en deux logarithmes et determinants d'interpolation, (French) (linear formes in two logaritms and interpolation determinants), J. Number Theory 55 (1995), 285-321. DOI: https://doi.org/10.1006/jnth.1995.1141
E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers, II, Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), 125-180. Translation in Izv. Math. 64 (2000), 1217-1269. DOI: https://doi.org/10.1070/IM2000v064n06ABEH000314
Z. SiAR AND R. KeSkin, On the Diophantine equation $F_n-F_n=2^a$, Colloq. Math. $mathbf{1 5 9}$ (2020), 119-126. DOI: https://doi.org/10.4064/cm7485-12-2018
P. Tieberabe And I. Diouf, On solutions of the Diophantine equation $L_n+L_m=3^a$, Malaya J. Mat. 9 $(02)(2021), 1-11$. DOI: https://doi.org/10.26637/mjm904/007
P. Tiebekabe and I. Diouf, Powers of Three as Difference of Two Fibonacci Numbers $F_n-F_m=3^a, J P$ Journal of Algebra, Number Theory and Applications, (2021). DOI: https://doi.org/10.17654/NT049020185
- NA
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 S. C. Patel, S. G. Rayaguru, Pagdame Tiebekabe, G. K. Panda, K. R. KAKANOU
This work is licensed under a Creative Commons Attribution 4.0 International License.