Exact solutions to interfacial flows with kinetic undercooling in a Hele-Shaw cell of time-dependent gap
Downloads
DOI:
https://doi.org/10.26637/mjm11S/002Abstract
Hele-Shaw cells where the top plate is moving uniformly at a prescribed speed and the bottom plate is fixed have been used to study interface related problems. This paper focuses on interfacial flows with linear and nonlinear kinetic undercooling regularization in a radial Hele-Shaw cell with a time dependent gap. We obtain some exact solutions of the moving boundary problems when the initial shape is a circle, an ellipse or an annular domain. For the nonlinear case, a linear stability analysis is also presented for the circular solutions. The methodology is to use complex analysis and PDE theory.
Keywords:
Hele-Shaw flow, nonlinear kinetic undercooling, exact solution, Schwarz function, Laplace equationMathematics Subject Classification:
35Q35, 76S05- Pages: 27-42
- Date Published: 01-10-2023
- Vol. 11 No. S (2023): Malaya Journal of Matematik (MJM): Special Issue Dedicated to Professor Gaston M. N'Guérékata’s 70th Birthday
P. H. A. A NJOS , E. O. D IAS AND J. A. M IRANDA , Kinetic undercooling in Hele-Shaw flows, Phys. Rev. E, 92 DOI: https://doi.org/10.1103/PhysRevE.92.043019
(2015), 043019.
J. M. B ACK , S. W. M C C UE , M. N. H SIEH , AND T. J. M ORONEY , The effect of surface tension and kinetic
undercooling on a radially-symmetric melting problem, Appl. Math. Comp., 229 (2014), 41-52. DOI: https://doi.org/10.1016/j.amc.2013.12.003
G. C ARVALHO , H. G AD ˆ ELHA , AND J. M IRANDA , Elastic fingering in rotating Hele–Shaw flows, Phys. Rev. E, 89 (2014), 053019. DOI: https://doi.org/10.1103/PhysRevE.89.053019
S. J. C HAPMAN , On the role of Stokes lines in the selection of Saffman-Taylor fingers with small surface
tension, Eur. J. Appl Math., 10 (1999), 513-534. DOI: https://doi.org/10.1017/S0956792599003848
S. J. C HAPMAN AND J. R. K ING , The selection of Saffman-Taylor fingers by kinetic undercooling, Journal of
Engineering Mathematics, 46 (2003), 1-32.
C.Y. C HEN , C.H. C HEN , AND J. M IRANDA , Numerical study of miscible fingering in a time dependent gap Hele-Shaw cell, Phys. Rev. E, 71 (2005), 056304. DOI: https://doi.org/10.1103/PhysRevE.71.056304
R. C OMBESCOT , V. H AKIM , T. D OMBRE , Y. P OMEAU AND A. P UMIR , Shape selection for Saffman-Taylor fingers, Physical Review Letter, 56 (1986), 2036-2039. DOI: https://doi.org/10.1103/PhysRevLett.56.2036
R. C OMBESCOT , V. H AKIM , T. D OMBRE ; Y. P OMEAU AND A. P UMIR , Analytic theory of Saffman-Taylor
fingers, Physical Review A, 37(1988), 1270-1283. DOI: https://doi.org/10.1103/PhysRevA.37.1270
M. C. D ALLASTON AND S. W. M C C UE , Corner and finger formation in Hele-Shaw flow with kinetic
undercooling regularization, European Journal of Applied Mathematics, 25 (2014), 707-727. DOI: https://doi.org/10.1017/S0956792514000230
P.J. D AVIS , The Schwarz function and its applications, The Mathematical Association of America, 1974.
E. D IAS AND J. M IRANDA , Control of radial fingering patterns: A weakly nonlinear approach, Phys. Rev. E, 81 (2010), 016312. DOI: https://doi.org/10.1103/PhysRevE.81.016312
E. D IAS AND J. M IRANDA , Determining the number of fingers in the lifting Hele-Shaw problem, Phys. Rev. E, 88 (2013), 043002. DOI: https://doi.org/10.1103/PhysRevE.88.043002
E. D IAS AND J. M IRANDA , Taper-induced control of viscous fingering in variable-gap Hele-Shaw flows,
Phys. Rev. E, 87 (2013), 053015.
J.D. E VANS AND J.R. K ING , Asymptotic results for the Stefan problem with kinetic undercooling, Q.J. Mech. Appl. Math., 53 (2000), 449-473. DOI: https://doi.org/10.1093/qjmam/53.3.449
B.P.J G ARDINER , S.W M C C UE , M.C D ALLASTON AND T.J M ORONEY , Saffman-Taylor fingers with kinetic undercooling, Physical Review E, 91 (2015), 023016. DOI: https://doi.org/10.1103/PhysRevE.91.023016
A. H E , J. L OWENGRUB , AND A. B ELMONTE , Modeling an elastic fingering instability in a reactive Hele-Shaw flow, SIAM J. Appl. Math., 72 (2012), pp. 842–856. DOI: https://doi.org/10.1137/110844313
D.C. H ONG AND J.S. L ANGER , Analytic theory for the selection of Saffman-Taylor fingers, Phys. Rev. Lett., 56 (1986), 2032-2035. DOI: https://doi.org/10.1103/PhysRevLett.56.2032
S.D. H OWISON , Complex variable methods in a Hele-Shaw moving boundary problems, Euro. J. Appl. Math. 3 (1992), 209-224. DOI: https://doi.org/10.1017/S0956792500000802
D. K ESSLER AND H. L EVINE , The theory of Saffman-Taylor finger, Phys. Rev. A, 33 (1986), 2634-2639. DOI: https://doi.org/10.1103/PhysRevA.33.2634
J.R. K ING AND J.D. E VANS , Regularization by kinetic undercooling of blow-up in the ill-posed Stefan
problem, SIAM J. Appl. Math., 65 (2005), 1677-1707. DOI: https://doi.org/10.1137/04060528X
K. M ALAIKAH , T. V. S AVINA , AND A. A. N EPOMNYASHCHY , Hele-Shaw flow with a time-dependent gap: The Schwarz function approach to the interior problem. Contemporary Mathematics (667) 2016, p199-210. DOI: https://doi.org/10.1090/conm/667/13540
J.W. M CLEAN AND P.G. S AFFMAN , The effect of surface tension on the shape of fingers in a Hele Shaw cell, J. Fluid Mech., 102 (1981), 455-469. DOI: https://doi.org/10.1017/S0022112081002735
J. N ASE , D. D ERKS , AND A. L INDNER , Dynamic evolution of fingering patterns in a lifted Hele-Shaw cell, Phys. Fluids, 23 (2011), 123101. DOI: https://doi.org/10.1063/1.3659140
N. B. P LESHCHINSKII AND M. R EISSIG , Hele-Shaw flows with nonlinear kinetic undercooling regularization, Nonlinear Anal., 50 (2002), 191-203. DOI: https://doi.org/10.1016/S0362-546X(01)00745-3
M. R EISSIG , S. V. R OGOSIN , AND F. H UBNER , Analytical and numerical treatment of a complex model for Hele-Shaw moving boundary value problems with kinetic undercooling regularization, Eur. J. Appl. Math.,
(1999), 561-579.
L. A. R OMERO , The fingering problem in a Hele-Shaw cell, Ph.D thesis, California Institute of Technology,
P.G. S AFFMAN , Viscous Fingering in Hele-shaw cells, J. Fluid Mech., 173 (1986), 73-94. DOI: https://doi.org/10.1017/S0022112086001088
P.G. S AFFMAN AND G.I.T AYLOR , The penetration of a fluid into a porous medium of Hele-Shaw cell
containing a more viscous fluid, Proc. R. Soc. London Ser. A, 245 (1958), 312-329. DOI: https://doi.org/10.1098/rspa.1958.0085
M. S HELLEY , F. T IAN , AND K. W LODARSKI , Hele-Shaw flow and pattern formation in a time-dependent gap, Nonlinearity, 10 (1997), 1471–1495. DOI: https://doi.org/10.1088/0951-7715/10/6/005
S. S INHA , T. D UTTA , AND S. T ARAFDAR , Adhesion and fingering in the lifting Hele–Shaw cell: Role of the substrate, Eur. Phys. J. E, 25 (2008), 267–275. DOI: https://doi.org/10.1140/epje/i2007-10289-9
B.I. S HRAIMAN , On velocity selection and the Saffman-Taylor problem, Phys. Rev. Lett., 56 (1986), 2028- DOI: https://doi.org/10.1103/PhysRevLett.56.2028
S. T ANVEER , The effect of surface tension on the shape of a Hele-Shaw cell bubble, Physics of Fluids, 29 DOI: https://doi.org/10.1063/1.865831
(1986), 3537- 3548.
S. T ANVEER , Analytic theory for the selection of symmetric Saffman-Taylor finger. Phys. Fluids, 30 (1987), DOI: https://doi.org/10.1063/1.866225
-1605.
S.T ANVEER AND X. X IE , Analyticity and Nonexistence of Classical Steady Hele-Shaw Fingers,
Communications on pure and applied mathematics, 56 (2003), 353-402. DOI: https://doi.org/10.1002/cpa.3030
G.I. T AYLOR AND P.G. S AFFMAN , A note on the motion of bubbles in a Hele-Shaw cell and Porous medium, Q. J. Mech. Appl. Math., 17 (1959), 265-279. DOI: https://doi.org/10.1093/qjmam/12.3.265
T IAN , F. R. , On the breakdown of Hele-Shaw solutions with non-zero surface tension I, Nonlinear Sci., 5 DOI: https://doi.org/10.1007/BF01209023
(1995), 479-494.
T IAN , F. R. , A Cauchy integral approach to Hele-Shaw Problems with a free boundary: the zero surface
tension case, Arch. Rat. Mech. Anal., 135 (1996), 175-196. DOI: https://doi.org/10.1007/BF02198454
T IAN , F. R. , Hele-Shaw problems in multidimensional spaces, Nonlinear Sci., 10 (2000), 275-290. DOI: https://doi.org/10.1007/s003329910011
J. M. V ANDEN -B ROECK , Fingers in a Hele-Shaw cell with surface tension, Phys. Fluids, 26 (1983), 2033- DOI: https://doi.org/10.1063/1.864406
X. X IE AND S. T ANVEER , Rigorous results in steady finger selection in viscous fingering, Arch. rational
mech. anal., 166 (2003), 219-286. DOI: https://doi.org/10.1007/s00205-002-0235-4
X. X IE , Rigorous results in existence and selection of Saffman-Taylor fingers by kinetic undercooling,
European Journal of Applied Mathematics, 30 (2019), 63-116. DOI: https://doi.org/10.1017/S0956792517000390
X. X IE , Analytic solution to an interfacial flow with kinetic undercooling in a time-dependent gap Hele-
Shaw cell. Discrete & Continuous Dynamical Systems - B,26 (2021), 4663-4680. DOI: https://doi.org/10.3934/dcdsb.2020307
X. X IE , Classical solution to an interfacial flow with kinetic undercooling in a time-dependent gap Hele-
Shaw cell, submitted, 2022.
M. Z HAO , X. L I , W. Y ING , A.B ELMONTE , J. L OWENGRUB , AND S. L I , Computation of a shrinking interface in a Hele-Shaw cell, SIAM J. Sci. Comput., 40 (2018), B1206–B1228. DOI: https://doi.org/10.1137/18M1172533
- NA
Similar Articles
- S. C. Patel, S. G. Rayaguru, Pagdame Tiebekabe, G. K. Panda, K. R. KAKANOU, On solutions of the Diophantine equation \(L_n\pm L_m=p^a\) , Malaya Journal of Matematik: Vol. 11 No. 03 (2023): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Xuming Xie, Sahar Almashaan
This work is licensed under a Creative Commons Attribution 4.0 International License.