Plancherel formula for the Shehu transform
Downloads
DOI:
https://doi.org/10.26637/mjm1103/003Abstract
We discuss some existence conditions of the Shehu transform, we provide a Plancherel formula and we also relate the Shehu equicontinuity to exponential \(L^2\)-equivanishing.
Keywords:
Shehu transform, Plancherel formula, Shehu equicontinuity, exponential \(L^2\)-equivanishingMathematics Subject Classification:
42A38, 42A99, 44A103- Pages: 272-277
- Date Published: 01-07-2023
- Vol. 11 No. 03 (2023): Malaya Journal of Matematik (MJM)
S. AGGARWAL, A. R. GUPTA AND S. D. SHARMA, A new application of Shehu transform for handling Volterraintegral equations of first kind, International Journal of Research in Advent Technology, 7(4)(2019), 438–445. DOI: https://doi.org/10.32622/ijrat.742019151
S. AGGARWAL, S. D. SHARMA AND A. R. GUPTA, Application of Shehu transform for handling growth anddecay problems, Global Journal of Engineering Science and Researches, 6(4)(2019), 190–198.
L. AKINYEMI AND O. S. IYIOLA, Exact and approximate solutions of time-fractional models arising fromphysics via Shehu transform, Math. Meth. Appl. Sci., 43(12)(2020), 7442–7464. DOI: https://doi.org/10.1002/mma.6484
S. ALFAQEIH AND E. MISIRLI, On double Shehu transform and its properties with applications, Int. J. Anal.Appl., 18(3)(2020), 381–395.[5] P. DYKE, An introduction to Laplace Transforms and Fourier Series, Springer-Verlag, London, 2014.
A. ISSA AND Y. MENSAH, Shehu transform: extension to distributions and measures, Journal of NonlinearModeling and Analysis, 2(4)(2020), 541–549.
A. KHALOUTA AND A. KADEM, A new method to solve fractional differential equations: inverse fractionalShehu transform method, Appl. Appli. Math., 14(2)(2019), 926–941.
M. KRUKOWSKI, Characterizing compact families via the Laplace transform, Ann. Acad. Sci. Fenn. Math.,45(2020), 991–1002. DOI: https://doi.org/10.5186/aasfm.2020.4553
S. MAITAMA AND W. ZHAO, New integral transform: Shehu transform, a generalisation of Sumudu andLaplace transform for solving differential equations, Int. J. Anal. Appl., 17 (2)(2019), 167–190.
X.-J. YANG, A new integral transform method for solving steady heat-transfer problem, Thermal Science,20 (3)(2016), 639–642. DOI: https://doi.org/10.2298/TSCI16S3639Y
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Anaté Kodjovi LAKMON, Yaogan MENSAH
This work is licensed under a Creative Commons Attribution 4.0 International License.