Optimal intervals for uniqueness of solutions for lipschitz nonlocal boundary value problems

Downloads

DOI:

https://doi.org/10.26637/mjm0101/004

Abstract

For the \(n\)th order differential equation, \(y^{(n)}=f\left(t, y, y^{\prime}, \ldots, y^{(n-1)}\right)\), where \(f\left(t, r_1, r_2, \ldots, r_n\right)\) satisfies a Lipschitz condition in terms of \(r_i, 1 \leq i \leq n\), we obtain optimal bounds on the length of intervals on which solutions are unique for certain nonlocal three point boundary value problems. These bounds are obtained through an application of the Pontryagin Maximum Principle.

Keywords:

Nonlocal boundary value problem, optimal length intervals, Pontryagin maximum principle

Mathematics Subject Classification:

34B15, 49J15
  • Pages: 19-25
  • Date Published: 01-09-2012
  • Vol. 1 No. 1 (2012): Inaugural Issue :: Malaya Journal of Matematik (MJM)

B. Ahmad and J. J. Nieto, Existence of solutions for nonlocal boundary value problems of higher-order nonlinear fractional differential equations, Abstr. Appl. Anal., 2009, Article ID 494720, 9 pages. DOI: https://doi.org/10.1155/2009/494720

M. Bahaj, Remarks on the existence results for second-order differential inclusions with nonlocal conditions, J. Dyn. Control Syst., 15(1)(2009), 2–43. DOI: https://doi.org/10.1007/s10883-008-9059-3

C. Bai and J. Fang, Existence of multiple positive solutions for m-point boundary value problems, J. Math. Anal. Appl., 281(2003), 76–85. DOI: https://doi.org/10.1016/S0022-247X(02)00509-7

Z. N. Benbouziane, A. Boucherif and S. M. Bouguima, Third order nonlocal multipoint boundary value problems, Dynam. Systems Appl., 13(2004), 41–48.

C. J. Chyan and J. Henderson, Uniqueness implies existence for (n,p) boundary value problems, Appl.Anal., 73(3-4)(1999), 543–556. DOI: https://doi.org/10.1080/00036819908840796

S. Clark and J. Henderson, Optimal interval lengths for nonlocal boundary value problems associated with third order Lipschitz equations, J. Math. Anal. Appl., 322(2006), 468–476. DOI: https://doi.org/10.1016/j.jmaa.2005.09.017

S. Clark and J. Henderson, Uniqueness implies existence and uniqueness criterion for nonlocal boundary value problems for third order differential equations, Proc. Amer. Math. Soc., 134(11)(2006), 3363–3372. DOI: https://doi.org/10.1090/S0002-9939-06-08368-7

P. W. Eloe and J. Henderson, Optimal intervals for third order Lipschitz equations, Differential Integral Equations, 2(1989), 397–404. DOI: https://doi.org/10.57262/die/1371648431

P. W. Eloe and J. Henderson, Uniqueness implies existence and uniqueness conditions for nonlocal boundary value problems for nth order differential equations, J. Math. Anal. Appl., 331(1)(2007), 240–247. DOI: https://doi.org/10.1016/j.jmaa.2006.08.087

P. W. Eloe and J. Henderson, Optimal intervals for uniqueness for uniqueness of solutions for nonlocal boundary value problems, Comm. Appl. Nonlin. Anal., 18(3)(2011), 89–97.

P. W. Eloe, R. A. Khan and J. Henderson, Uniqueness implies existence and uniqueness conditions for a class of (k+j)-point boundary value problems for nth order differential equations, Canad. Math. Bulletin, 55(2)(2012), 285–296. DOI: https://doi.org/10.4153/CMB-2011-117-0

W. Feng and J. R. L. Webb, Solvability of a three-point nonlinear boundary value problem at resonance, Nonlinear Anal., 30(1997), 3227–3238. DOI: https://doi.org/10.1016/S0362-546X(96)00118-6

W. Feng and J. R. L. Webb, Solvability of an m-point nonlinear boundary value problem with non-linear growth, J. Math. Anal. Appl., 212(1997), 467–480. DOI: https://doi.org/10.1006/jmaa.1997.5520

R. Gamkrelidze, Principles of Optimal Control, Plenum, New York, 1978. DOI: https://doi.org/10.1007/978-1-4684-7398-8

J. R. Graef, J. Henderson and B. Yang, Existence of positive solutions of a higher order nonlocal singular boundary value problem, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 16(2009), Differential Equations and Dynamical Systems, Suppl., S1, 147–152.

J. R. Graef and J. R. L. Webb, Third order boundary value problems with nonlocal boundary conditions, Nonlinear Anal., 71(5-6)(2009), 1542–1551. DOI: https://doi.org/10.1016/j.na.2008.12.047

Y. Guo, W. Shan and W. Ge, Positive solutions for second-order m-point boundary value problems, J. Comput. Appl., 151(2003), 415–424. DOI: https://doi.org/10.1016/S0377-0427(02)00739-2

C. P. Gupta, S. K. Ntouyas and P. Ch. Tsamatos, Solvability of an m-point boundary value problem for second order ordinary differential equations, J. Math. Anal. Appl., 189(1995), 575–584. DOI: https://doi.org/10.1006/jmaa.1995.1036

D. Hankerson and J. Henderson, Optimality for boundary value problems for Lipschitz equations, J. Differential Equations, 77(1989), 392–404. DOI: https://doi.org/10.1016/0022-0396(89)90151-4

P. Hartman, On n-parameter families and interpolation problems for nonlinear ordinary differential equations, Trans. Amer. Math. Soc., 154(1971), 201–226. DOI: https://doi.org/10.2307/1995438

J. Henderson, Existence of solutions of right focal point boundary value problems for ordinary differential equations, Nonlinear Anal., 5(9)(1981), 989–1002. DOI: https://doi.org/10.1016/0362-546X(81)90058-4

J. Henderson, Best interval lengths for boundary value problems for third order Lipschitz equations, SIAM J. Math. Anal., 18(1987), 293–305. DOI: https://doi.org/10.1137/0518023

J. Henderson, Boundary value problems for nth order Lipschitz equations, J. Math. Anal. Appl., 144(1988), 196–210. DOI: https://doi.org/10.1016/0022-247X(88)90019-4

J. Henderson, Uniqueness implies existence for three-point boundary value problems for second order differential equations, Appl. Math. Lett., 18(2005), 905–909. DOI: https://doi.org/10.1016/j.aml.2004.07.032

J. Henderson, Optimal interval lengths for nonlocal boundary value problems for second order Lipschitz equations, Comm. Appl. Anal., 15(2-4)(2011), 475–482.

J. Henderson, Existence and uniqueness of solutions of (k+2)-point nonlocal boundary value problems for ordinary differential equations, Nonlinear Anal., 74(2011), 2576–2584. DOI: https://doi.org/10.1016/j.na.2010.11.048

J. Henderson, B. Karna and C. C. Tisdell, Existence of solutions for three-point boundary value problems for second order equations, Proc. Amer. Math. Soc., 133(2005), 1365–1369. DOI: https://doi.org/10.1090/S0002-9939-04-07647-6

J. Henderson and R. McGwier, Uniqueness, existence and optimality for fourth order Lipschitz equations, J. Differential Equations, 67(1987), 414–440. DOI: https://doi.org/10.1016/0022-0396(87)90135-5

E. Hernández, Existence of solutions for an abstract second-order differenetial equation with nonlocal conditions, Electron. J. Differential Equations, 2009, No. 96, 1-10. DOI: https://doi.org/10.1619/fesi.52.113

G. Infante, Nonlocal boundary value problems with two nonlinear boundary conditions, Commun. Appl. Anal., 12(3)(2008), 279–288.

L. K. Jackson, Existence and uniqueness of solutions for boundary value problems for Lipschitz equations, J. Differential Equations, 32(1979), 76–90. DOI: https://doi.org/10.1016/0022-0396(79)90052-4

L. K. Jackson, Boundary value problems for Lipschitz equations, Differential Equations (Proc. Eighth Fall Conf., Oklahoma State Univ., Stillwater, Okla., 1979), pp. 31–50, Academic Press, New York, 1980. DOI: https://doi.org/10.1016/B978-0-12-045550-8.50008-6

P. Kang and Z. Wei, Three positive solutions of singular nonlocal boundary value problems for systems of nonlinear second-order ordinary differential equations, Nonlinear Anal., 70(1)(2009), 444–451. DOI: https://doi.org/10.1016/j.na.2007.12.014

R. A. Khan, Quasilinearization method and nonlocal singular three point boundary value problems, Electron. J. Qual. Theory Differ. Equ., 2009, Special Edition I, No. 17, 1-13. DOI: https://doi.org/10.14232/ejqtde.2009.4.17

G. Klaasen, Existence theorems for boundary value problems for nth order ordinary differential equations, Rocky Mtn. J. Math., 3(1973), 457–472. DOI: https://doi.org/10.1216/RMJ-1973-3-3-457

E. Lee and L. Markus, Foundations of Optimal Control, Wiley, New York, 1967.

M. Li and C. Kou, Existence results for second-order impulsive neutral functional differential equations with nonlocal conditions, Discrete Dyn. Nat. Soc., 2009, Article ID 641368, 11 pages. DOI: https://doi.org/10.1155/2009/641368

R. Ma, Existence theorems for a second-order three-point boundary value problem, J. Math. Anal. Appl., 212(1997), 430–442. DOI: https://doi.org/10.1006/jmaa.1997.5515

Yu. Melentsova, A best possible estimate of the nonoscillation interval for a linear differential equation with coefficients bounded in L r , Differ. Equ., 13(1977), 1236–1244.

Yu. Melentsova and G. Milshtein, An optimal estimate of the interval on which a multipoint boundary value problem possesses a solution, Differ. Equ., 10(1974), 1257–1265.

Yu. Melentsova and G. Milshtein, Optimal estimation of the nonoscillation interval for linear differential equations with bounded coefficients, Differ. Equ., 17(1981), 1368–1379.

S. K. Ntouyas and D. ORegan, Existence results for semilinear neutral functional differential inclusions with nonlocal conditions, Differ. Equ. Appl., 1(1)(2009), 41–65. DOI: https://doi.org/10.7153/dea-01-03

P. K. Palamides, G. Infante and P. Pietramala, Nontrivial solutions of a nonlinear heat flow problem via Sperner’s lemma, Appl. Math. Lett., 22(9)(2009), 1444–1450. DOI: https://doi.org/10.1016/j.aml.2009.03.014

S. Roman and A. Stikonas, Greens functions for stationary problems with nonlocal boundary conditions, Lith. Math. J., 49(2)(2009), 190–202. DOI: https://doi.org/10.1007/s10986-009-9041-0

H. B. Thompson and C. C. Tisdell, Three-point boundary value problems for second-order ordinary differential equations, Math. Comput. Modelling, 34(2001), 311–318. DOI: https://doi.org/10.1016/S0895-7177(01)00063-2

J. Wang and Z. Zhang, Positive solutions to a second- order three-point boundary value problem, J.Math. Anal. Appl., 285(2003), 237–249. DOI: https://doi.org/10.1016/S0022-247X(03)00396-2

J. R. L. Webb, A unified approach to nonlocal boundary value problems, Dynamic systems and applications, 5, 510–515, Dynamic, Atlanta, GA, 2008.

J. R. L. Webb, Uniqueness of the principal eigenvalue in nonlocal boundary value problems, Discrete Contin. Dyn. Syst. Ser. S, 1(1)(2008), 177–186. DOI: https://doi.org/10.3934/dcdss.2008.1.177

J. R. L. Webb, Remarks on nonlocal boundary value problems at resonance, Appl. Math. Comput.,216(2)(2010), 497–500. DOI: https://doi.org/10.1016/j.amc.2010.01.056

J. R. L. Webb and M. Zima, Multiple positive solutions of resonant and non-resonant nonlocal boundary value problems, Nonlinear Anal., 71(3-4)(2009), 1369–1378. DOI: https://doi.org/10.1016/j.na.2008.12.010

  • NA

Metrics

Metrics Loading ...

Published

01-09-2012

How to Cite

Johnny Henderson. “Optimal Intervals for Uniqueness of Solutions for Lipschitz Nonlocal Boundary Value Problems”. Malaya Journal of Matematik, vol. 1, no. 1, Sept. 2012, pp. 19-25, doi:10.26637/mjm0101/004.