Existence results for impulsive neutral stochastic functional integrodifferential systems with infinite delay

Downloads

DOI:

https://doi.org/10.26637/mjm0101/005

Abstract

This paper is devoted to build the existence of mild solutions of impulsive neutral stochastic functional integrodifferential equations (INSFIDEs) with infinite delay at abstract phase space in Hilbert spaces. Under the uniform Lipschitz condition, we obtain the solution for INSFIDEs. Sufficient conditions for the existence results are derived with the help of Krasnoselski-Schaefer type fixed point theorem. An example is provided to illustrate the theory.

Keywords:

Impulsive neutral stochastic integrodifferential equations, infinite delay, Krasnoselski-Schaefer type fixed point theorem, semigroup theory

Mathematics Subject Classification:

34A37, 37H10, 60H20, 34K50, 34K05
  • Pages: 26-41
  • Date Published: 01-09-2012
  • Vol. 1 No. 1 (2012): Inaugural Issue :: Malaya Journal of Matematik (MJM)

Alwan Mohamad S, Liu Xinzhi, Xie Wei-Chau. Existence, continuation and uniqueness of stochastic impulsive systems with time delay. Journal of the Franklin Institute, 2010, 347: 1317-1333. DOI: https://doi.org/10.1016/j.jfranklin.2010.06.005

Anguraj A, Mallika Arjunan M. Existence and uniqueness of mild and classical solutions of impulsive evolution equations. Electronic Journal of Differential Equations, 2005, 111: 1-8.

Anguraj A, Mallika Arjunan M. Existence results for an impulsive neutral integro-differential equations in Banach spaces. Nonlinear Studies, 2009, 16(1): 33-48.

Anguraj A, Karthikeyan K. Existence of solutions for impulsive neutral functional differential equations with nonlocal conditions. Nonlinear Anal, 2009, 70(7): 2717-2721. DOI: https://doi.org/10.1016/j.na.2008.03.059

Anguraj A, Vinodkumar A. Existence, Uniqueness and Stability of Impulsive Stochastic Partial Neutral Functional Differential Equations with infinite delay. J Appl Math and Informatics, 2010, 28:739-751.

Bainov D D, Simeonov P S. Impulsive Differential Equations: Periodic Solutions and Applications. Longman Scientific and Technical Group, England, 1993.

Balachandran K, Park J, Chandrasekaran M. Nonlocal Cauchy problems for delay integrodifferential eqiations of Sobolev type in Banach spaces. Applied Mathematics Letters, 2002, 15: 845-854. DOI: https://doi.org/10.1016/S0893-9659(02)00052-6

Balachandran K, Sathya R. Controllability of Nonlocal Impulsive Stochastic Quasilinear Integrodifferential Systems. Electron J Qual Theory Differ Equ, 2011, 50: 1-16. DOI: https://doi.org/10.14232/ejqtde.2011.1.50

Balachandran K, Annapoorani N. Existence results for impulsive neutral evolution integrodifferential equations with infinite delay. Nonlinear Analysis: Hybrid Systems, 2009, 3: 674-684. DOI: https://doi.org/10.1016/j.nahs.2009.06.004

Balachandran K, Park J Y, Park S H. Controllability of nonlocal impulsive quasilinear integrodifferential systems in Banach spaces. Rep Math Phys 2010, 65: 247-257. DOI: https://doi.org/10.1016/S0034-4877(10)80019-9

Balasubramaniam P, Chandrasekaran M. Existence of solutions of nonlinear integrodifferential equation with nonlocal boundary conditions in Banach space. Atti Sem Mat Fis Univ, Modena, 1998, 46:

-13.

Balasubramaniam P, Ntouyas S K. Controllability for neutral stochastic functional differential inclusions with infinite delay in abstract space. J Math Anal Appl, 2006, 324: 161-176. DOI: https://doi.org/10.1016/j.jmaa.2005.12.005

Balasubramaniam P, Vinayagam D. Existence of solutions of nonlinear neutral stochastic diffferential inclusions in Hilbert space. Stochastic Anal Appl, 2005, 23: 137-151. DOI: https://doi.org/10.1081/SAP-200044463

Balasubramaniam P, Park J, Vincent Antony Kumar J. Existence of solutions for semilinear neutral stochastic functional differential equations with nonlocal conditions. Nonlinear Analysis, 2009, 71: 1049-1058. DOI: https://doi.org/10.1016/j.na.2008.11.032

Bao Haibo. Existence and uniqueness of solutions of neutral stochastic functional differential equations with infinite delay in L p (Ω,C h ). Turk J Math, 2010, 34: 45-58. DOI: https://doi.org/10.3906/mat-0806-3

Bharucha-Ried A T. Random Integral Equations. Academic Press, New York, 1982.

Burton T A, Kirk C. A fixed point theorem of Krasnoselski-Schaefer type. Math Nachr, 1998, 189: 23-31. DOI: https://doi.org/10.1002/mana.19981890103

Chang Y K, Anguraj A, Mallika Arjunan M. Existence results for non-densely defined neutral impulsive differential inclusions with nonlocal conditions. J Appl Math Comput, 2008, 28: 79-91. DOI: https://doi.org/10.1007/s12190-008-0078-8

Chang Y K, Anguraj A, Mallika Arjunan M. Existence results for impulsive neutral functional differential equations with infinite delay. Nonlinear Analysis: Hybrid Systems, 2008, 2(1): 209-218. DOI: https://doi.org/10.1016/j.nahs.2007.10.001

Chang Y K, Kavitha V Mallika Arjunan M. Existence results for impulsive neutral differential and integrodifferential equations with nonlocal conditions via fractional operators. Nonlinear Analysis: Hybrid Systems, 2010, 4(1): 32-43. DOI: https://doi.org/10.1016/j.nahs.2009.07.004

Chang Y K. Controllability of impulsive functional differential systems with infinite delay in Banach spaces. Chaos Solitons Fracals, 2007, 33: 1601-1609. DOI: https://doi.org/10.1016/j.chaos.2006.03.006

Chang Y, Nieto J J. Existence of solutions for impulsive neutral integro-differential inclusion with nonlocal initial conditions via fractional operators. Numer Funct Anal Optim, 2009, 30: 227-244. DOI: https://doi.org/10.1080/01630560902841146

Cui J, Yan Lithan, Wu Xiaotai. Nonlocal Cauchy problem for some stochastic integrodifferential equations in Hilbert spaces. Journal of the Korean Statistical Society, 2011. DOI: https://doi.org/10.1016/j.jkss.2011.10.001

Fengying W, Ke Wang. The existence and uniqueness of the solution for stochastic functional differential equations with infinite delay. J Math Anal Appl, 2007, 331: 516-531. DOI: https://doi.org/10.1016/j.jmaa.2006.09.020

Grecksch W, Tudor C. Stochastic Evolution equations: A Hilbert space Approach. Academic Verlag, Berlin, 1995.

Hernandez E, Henriquez H R, Marco R. Existence of solutions for a class of impulsive neutral functional differential equations. J Math Anal Appl 2007, 331: 1135-1158.

Hernandez E. Existence results for partial neutral functional integrodifferential differential equations with unbounded delay. J Math Anal Appl, 2004, 292: 194-210. DOI: https://doi.org/10.1016/j.jmaa.2003.11.052

Hernandez E, Henriquez H R. Impulsive partial neutral differential equations. Appl Math Lett, 2006, 19: 215-222. DOI: https://doi.org/10.1016/j.aml.2005.04.005

Hernandez E, Rabello M, Henriquez H R. Existence of solutions for impulsive partial neutral functional differential equations. J Math Anal Appl 2007, 331: 1135-1158. DOI: https://doi.org/10.1016/j.jmaa.2006.09.043

Hinto Y, Murakami S, Naito T. Functional-Differential Equations with infinite delay: Lecture Notes in Mathematics vol. 1473. Springer-Verlag, Berlin, 1991. DOI: https://doi.org/10.1007/BFb0084432

Karthikeyan S, Balachandran K. Controllability of nonlinear stochastic neutral impulsive systems. Nonlinear Analysis, 2009, 3: 266-276. DOI: https://doi.org/10.1016/j.nahs.2009.01.010

Kim J H. On a stochastic nonlinear equation in one-dimensional viscoelasticity. Trans American Math Soc, 2002, 354: 1117-1135. DOI: https://doi.org/10.1090/S0002-9947-01-02894-X

Lin A, Hu L. Existence results for impulsive neutral stochastic functional integro-differential inclusions with nonlocal initial conditions. Computers and Mathematics with Applications, 2010, 59: 64-73. DOI: https://doi.org/10.1016/j.camwa.2009.09.004

Lin A, Ren Y, Xia N. On neutral impulsive stochastic integro-differential equations with infinite delays via fractional operators. Mathematical and Computer Modelling, 2010, 51: 413-424. DOI: https://doi.org/10.1016/j.mcm.2009.12.006

Lakshmikantham V, Bainov D D, Simeonov P S. Theory of Impulsive Differential Equations. World Scientific, Singapore, 1989. DOI: https://doi.org/10.1142/0906

Mao X. Stochastic Differential Equations and Aplications. Horwood Publishing Limited, Chichester, UK, 1997.

Oksendal B. Stochastic Differential Equations. 4th ed, New York: Springer, 1995. DOI: https://doi.org/10.1007/978-3-662-03185-8_5

Pazy A. Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer- Verlag, New York, 1983. DOI: https://doi.org/10.1007/978-1-4612-5561-1

Park J Y, Balachandran K, Annapoorani N. Existence results for impulsive neutral functional integrodifferential equations with infinite delay. Nonlinear Analysis, 2009, 71: 3152-3162. DOI: https://doi.org/10.1016/j.na.2009.01.192

Ren Y, Hu L, Sakthivel R. Controllability of impulsive neutral stochastic functional differential inclusions with infinite delay. Journal of Computational and Applied Mathematics, 2011, 235: 2603-2614. DOI: https://doi.org/10.1016/j.cam.2010.10.051

Rogovchenko Y V. Impulsive evolution systems: Main results and new trends. Dynam Contin Discrete Impuls Syst, 1997, 3(1): 57-88.

Rogovchenko Y V. Nonlinear impulsive evolution systems and application to population models. J Math Anal Appl, 1997, 207(2): 300-315. DOI: https://doi.org/10.1006/jmaa.1997.5245

Sakthivel R, Mahmudov N I, Le Sang-Gu. Controllability of nonlinear impulsive stochastic systems. Int J Control, 2009, 82: 801-807. DOI: https://doi.org/10.1080/00207170802291429

Samoilenko A M, Perestyuk N A. Impulsive Differential Equations. World Scientific, Singapore, 1995. DOI: https://doi.org/10.1142/2892

Selvaraj B, Mallika Arjunan M, Kavitha V. Existence of solutions for impulsive nonlinear differential equations with nonlocal conditions. J KSIAM, 2009, 13(3): 203-215.

Yan B. Boundary value problems on the half line with impulsive and infinite delay. J Math Anal Appl, 2001, 259: 94-114. DOI: https://doi.org/10.1006/jmaa.2000.7392

  • NA

Metrics

Metrics Loading ...

Published

01-09-2012

How to Cite

C. Parthasarathy, and M. Mallika Arjunan. “Existence Results for Impulsive Neutral Stochastic Functional Integrodifferential Systems With Infinite Delay”. Malaya Journal of Matematik, vol. 1, no. 1, Sept. 2012, pp. 26-41, doi:10.26637/mjm0101/005.