Existence and stability for fractional order integral equations with multiple time delay in Fr´echet spaces

Downloads

DOI:

https://doi.org/10.26637/mjm0101/006

Abstract

In this paper, we present some results concerning the existence of solutions for a system of integral equations of Riemann-Liouville fractional order with multiple time delay in Fr´ echet spaces, we use an extension of the Burton-Kirk fixed point theorem. Also we investigate the stability of solutions of this system.

Keywords:

Functional integral equation, left-sided mixed Riemann-Liouville integral of fractional order, solution, stability, multiple time delay, Fr´ echet space, fixed point

Mathematics Subject Classification:

26A33
  • Pages: 42-49
  • Date Published: 01-09-2012
  • Vol. 1 No. 1 (2012): Inaugural Issue :: Malaya Journal of Matematik (MJM)

S. Abbas, D. Baleanu and M. Benchohra, Global attractivity for fractional order delay partial integro-differential equations, Adv. Difference Equ., 2012, 19 pages doi:10.1186/1687-1847-2012-62. DOI: https://doi.org/10.1186/1687-1847-2012-62

S. Abbas and M. Benchohra, Nonlinear quadratic Volterra Riemann-Liouville integral equations of fractional order, Nonlinear Anal. Forum, 17 (2012), 1-9. DOI: https://doi.org/10.14232/ejqtde.2012.1.81

S. Abbas and M. Benchohra, On the existence and local asymptotic stability of solutions of fractional order integral equations, Comment. Math., 52(1)(2012), 91-100.

S. Abbas and M. Benchohra, Fractional order Riemann-Liouville integral equations with multiple time delay, Appl. Math. E-Notes, (to appear).

S. Abbas, M. Benchohra and J. R. Graef, Integro-differential equations of fractional order, Differ.Equ. Dyn. Syst., 20(2)(2012), 139-148. DOI: https://doi.org/10.1007/s12591-012-0110-1

S. Abbas, M. Benchohra and J. Henderson, On global asymptotic stability of solutions of nonlinear quadratic Volterra integral equations of fractional order, Comm. Appl. Nonlinear Anal., 19(1)(2012), 79-89.

S. Abbas, M. Benchohra and G.M. N’Gu´ er´ ekata, Topics in Fractional Differential Equations, Springer, New York, 2012. DOI: https://doi.org/10.1007/978-1-4614-4036-9

S. Abbas, M. Benchohra and A. N. Vityuk, On fractional order derivatives and Darboux problem for implicit differential equations. Fract. Calc. Appl. Anal., 15(2)(2012), 168-182. DOI: https://doi.org/10.2478/s13540-012-0012-5

C. Avramescu, Some remarks on a fixed point theorem of Krasnoselskii, Electron. J. Qual. Theory Differ. Equ., 5(2003), 1-15. DOI: https://doi.org/10.14232/ejqtde.2003.1.5

C. Avramescu and C. Vladimirescu, An existence result of asymptotically stable solutions for an integral equation of mixed type, Electron. J. Qual. Theory Differ. Equ., 25(2005), 1-6. DOI: https://doi.org/10.14232/ejqtde.2005.1.25

C. Avramescu and C. Vladimirescu, On the existence of asymptotically stable solutions of certain integral equations, Nonlinear Anal., 66(2)(2007), 472-483. DOI: https://doi.org/10.1016/j.na.2005.11.041

D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional Calculus Models and Numerical Methods, World Scientific Publishing, New York, 2012. DOI: https://doi.org/10.1142/8180

J. Bana´ s and B.C. Dhage, Global asymptotic stability of solutions of a functional integral equation, Nonlinear Anal., 69(7)(2008), 1945-1952. DOI: https://doi.org/10.1016/j.na.2007.07.038

J. Bana´ s and B. Rzepka, On existence and asymptotic stability of solutions of a nonlinear integral equation, J. Math. Anal. Appl., 284(2003), 165-173. DOI: https://doi.org/10.1016/S0022-247X(03)00300-7

J. Bana´ s and T. Zajac, A new approach to the theory of functional integral equations of fractional order, J. Math. Anal. Appl., 375(2011), 375-387. DOI: https://doi.org/10.1016/j.jmaa.2010.09.004

M. A. Darwish, J. Henderson, and D. O’Regan, Existence and asymptotic stability of solutions of a perturbed fractional functional integral equations with linear modification of the argument, Bull. Korean Math. Soc., 48(3)(2011), 539-553. DOI: https://doi.org/10.4134/BKMS.2011.48.3.539

B. C. Dhage, Local asymptotic attractivity for nonlinear quadratic functional integral equations, Nonlinear Anal., 70(2009), 1912-1922. DOI: https://doi.org/10.1016/j.na.2008.02.109

B. C. Dhage, Global attractivity results for nonlinear functional integral equations via a Krasnoselskii type fixed point theorem, Nonlinear Anal., 70(2009), 2485-2493. DOI: https://doi.org/10.1016/j.na.2008.03.033

B. C. Dhage, Attractivity and positivity results for nonlinear functional integral equations via measure of noncompactness, Differ. Equ. Appl., 2(3)(2010), 299-318. DOI: https://doi.org/10.7153/dea-02-20

M. Frigon and A. Granas, R´ esultats de type Leray-Schauder pour des contractions sur des espaces de Fr´ echet, Ann. Sci. Math. Qu´ ebec, 22(2)(1998), 161-168.

R.P. Kanwal, Linear Integral Equations, Academic Press, New York 1997. DOI: https://doi.org/10.1007/978-1-4612-0765-8

A. A. Kilbas, Hari M. Srivastava, and Juan J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier Science B.V., Amsterdam, 2006.

V. Lakshmikantham, S. Leela and J. Vasundhara, Theory of Fractional Dynamic Systems, Cambridge Academic Publishers, Cambridge, 2009.

B. G. Pachpatte, On Volterra-Fredholm integral equation in two variables, Demonstratio Math., XL(4)(2007), 839-852. DOI: https://doi.org/10.1515/dema-2007-0410

B.G. Pachpatte, On Fredholm type integral equation in two variables, Differ. Equ. Appl., 1(2009), 27-39. DOI: https://doi.org/10.7153/dea-01-02

I. Podlubny, Fractional Differential Equation, Academic Press, San Diego, 1999.

F.G. Tricomi, Integral Equations. Pure and Applied Mathematics Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London 1957.

A. N. Vityuk and A. V. Golushkov, Existence of solutions of systems of partial differential equations of fractional order, Nonlinear Oscil., 7(3)(2004), 318-325. DOI: https://doi.org/10.1007/s11072-005-0015-9

E. Zeidler, Nonlinear Analysis and Fixed-Point Theorems, Springer-Verlag, Berlin, 1993.

  • NA

Metrics

Metrics Loading ...

Published

01-09-2012

How to Cite

Said Abbas, and Mouffak Benchohra. “Existence and Stability for Fractional Order Integral Equations With Multiple Time Delay in Fr´echet Spaces”. Malaya Journal of Matematik, vol. 1, no. 1, Sept. 2012, pp. 42-49, doi:10.26637/mjm0101/006.