Existence results for neutral functional fractional differential equations with state dependent-delay
Downloads
DOI:
https://doi.org/10.26637/mjm0101/007Abstract
In this paper, we provide sufficient conditions for the existence of mild solutions for a class of fractional differential equations with state-dependent delay. The results are obtained by using the nonlinear alternative of Leray-Schauder type [14] fixed point theorem. An example is provided to illustrate the main results.
Keywords:
Functional differential equation, fractional derivative, fractional integral, state-dependent delay, fixed pointMathematics Subject Classification:
26A32, 26A42, 34K30- Pages: 50-61
- Date Published: 01-09-2012
- Vol. 1 No. 1 (2012): Inaugural Issue :: Malaya Journal of Matematik (MJM)
R. P. Agarwal, M. Benchohar and S. Hamani, A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Applicante Mathematica, 109(3)(2010), 973-1033. DOI: https://doi.org/10.1007/s10440-008-9356-6
R. P. Agarwal, Bruno de Andrade and G. Siracusa, On fractional integro-differential equations with state-dependent delay, Comput. Math. Appl., 62(3)(2011), 1143-1149. DOI: https://doi.org/10.1016/j.camwa.2011.02.033
B. Ahmad and Juan J. Nieto, Existence results for nonlinear boundary value problems of fractional integrodifferential equations with integral boundary conditions, Boundary Value Problems, Volume 2009 (2009), Article ID 708576, 11 pages. DOI: https://doi.org/10.1155/2009/708576
W. Aiello, H. I. Freedman and J. Wu, Analysis of a model representing stage-structured population growth with state-dependent time delay, SIAM J. Appl. Math., 52(3)(1992), 855–869. DOI: https://doi.org/10.1137/0152048
A. Anguraj, M. Mallika Arjunan and E. Hernández, Existence results for an impulsive neutral functional differential equation with state-dependent delay, Applicable Analysis, 86(7)(2007), 861-872. DOI: https://doi.org/10.1080/00036810701354995
K. Balachandran, J. Y. Park, Nonlocal Cauchy problem for abstract fractional semilinear evolution equations, Nonlinear Analysis, 71(10)(2009), 4471-4475. DOI: https://doi.org/10.1016/j.na.2009.03.005
M. Benchohra, J. Henderson, S. K. Ntouyas and A. Ouahab, Existence results for fractional functional differential inclusions with infinite delay and application to control theory, Fract. Calc. Appl. Anal., 11 (2008), 35–56.
J. P. Carvalho dos Santos, M. Mallika Arjunan and Claudio Cuevas, Existence results for fractional neutral integrodifferential equations with state-dependent delay, Comput. Math. Appl., 62(3)(2011), 1275-1283. DOI: https://doi.org/10.1016/j.camwa.2011.03.048
J. P. Carvalho dos Santos, Claudio Cuevas and Bruno de Andrade, Existence results for a fractional equation with state-dependent delay, Advances in Difference Equations, Volume 2011, Article ID 642013, 15 pages. DOI: https://doi.org/10.1155/2011/642013
M. A. Darwish and S. K. Ntouyas, Semilinear functional differential equations of fractional order with state-dependent delay, Electronic Journal of Differential Equations, Vol. 2009(2009), No. 38, 1-10.
M. M. El-Borai, Some probability densities and fundamental solutions of fractional evolution equations, Choas, Solitons and Fractals, 14(2002), 433-440. DOI: https://doi.org/10.1016/S0960-0779(01)00208-9
M. M. El-Borai, On some stochastic fractional integro-differential equations, Advances in Dynamical Systems and Applications, 1(2006), 49-57.
Y. K. Chang and J. J. Nieto, Some new existence results for fractional differential inclusions with boundary conditions, Mathematics and Computer Modelling, 49(2009), 605–609. DOI: https://doi.org/10.1016/j.mcm.2008.03.014
A. Granas and J. Dugundji, Fixed Point Theory , Springer-Verlag, New York, 2003. DOI: https://doi.org/10.1007/978-0-387-21593-8
J. K. Hale and J. Kato, Phase space for retarded equations with infinite delay, Funckcial. Ekvac., Vol. 21(1)(1978), 11–41.
F. Hartung and J. Turi, Identification of parameters in delay equations with state-dependent delays, Nonlinear Analysis: Theory Methods & Applications, 29(11)(1997), 1303–1318. DOI: https://doi.org/10.1016/S0362-546X(96)00100-9
F. Hartung, T. Herdman and J. Turi, Parameter identification in classes of neutral differential equations with state-dependent delays, Nonlinear Analysis: Theory Methods & Applications, 39(3)(2000), 305–325. DOI: https://doi.org/10.1016/S0362-546X(98)00169-2
F. Hartung, Parameter estimation by quasilinearization in functional differential equations with state-dependent delays: a numerical study, Proceedings of the Third World Congress of Nonlinear Analysis, Part 7 (Catania, 2000). Nonlinear Analysis: Theory Methods & Applications, 47(7)(2001), 4557–4566. DOI: https://doi.org/10.1016/S0362-546X(01)00569-7
J. Henderson and A. Ouahab, Fractional functional differential inclusions with finite delay, Nonlinear Analysis, 70(2009), 2091–2105. DOI: https://doi.org/10.1016/j.na.2008.02.111
E. Hernández, A. Prokopczyk and L. Ladeira, A note on partial functional differential equations with state-dependent delay, Nonlinear Analysis, 7(2006), 510–519. DOI: https://doi.org/10.1016/j.nonrwa.2005.03.014
E. Hernández, M. Pierri and G. Goncalves, Existence results for an impulsive abstract partial differential equation with state-dependent delay, Comput. Appl. Math., 52(2006), 411–420. DOI: https://doi.org/10.1016/j.camwa.2006.03.022
E. Hernández and Mark A. Mckibben, On state- dependent delay partial neutral functional-differential equations, Appl. Math. Comput., Vol. 186(1)(2007), 294–301 DOI: https://doi.org/10.1016/j.amc.2006.07.103
E. Hernández, Mark A. Mckibben and Hernan R. Henriquez, Existence results for partial neutral functional differential equations with state-dependent delay, Mathematical and Computer Modelling, 49(2009), 1260–1267. DOI: https://doi.org/10.1016/j.mcm.2008.07.011
Y. Hino, S. Murakami and T. Naito, Functional Differential Equations with Infinite Delay, in: Lecture Notes in Mathematics, 1473, Springer-Verlag, Berlin, 1991. DOI: https://doi.org/10.1007/BFb0084432
O. K. Jaradat, A, Al-Omari and S. Momani; Existence of the mild solution for fractional semilinear initial calue problems, Nonlinear Analysis, 69(2008), 3153–3159. DOI: https://doi.org/10.1016/j.na.2007.09.008
F. Kapper and W. Schappacher, Some considerations to the fundamental theory of infinite delay equations, J. Differential Equations, 37(1980), 141-183. DOI: https://doi.org/10.1016/0022-0396(80)90093-5
A. A. Kilbas, Hari M. Srivastava, and Juan J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006.
W. S. Li, Yong-Kui Chang and Juan J. Nieto, Solvability of impulsive neutral evolution differential inclusions with state-dependent delay, Math. Comput. Modelling, 49(2009), 1920-1927. DOI: https://doi.org/10.1016/j.mcm.2008.12.010
M. Mallika Arjunan and V. Kavitha, Existence results for impulsive neutral functional differential equations with state-dependent delay, Electron. J. Qual. Theory Differ. Equ., 26(2009), 1-13. DOI: https://doi.org/10.14232/ejqtde.2009.1.26
R. Martin, Nonlinear Operators and Differential Equations in Banach spaces, Robert E. Krieger Publ.Co., Florida, 1987.
K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, Inc., New York, 1993.
G. M. Mophou and G. M. N’Gu´ er´ ekata, Mild solutions for semilinear fractional differential equations, Electronic Journal of Differential Equations, Vol.2009(2009), No. 21, 1–9.
I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
K. Schumacher, Existence and continuous dependence for differential equations with unbounded delay, Arch. Rational Mech. Anal., 64(1978), 315-335. DOI: https://doi.org/10.1007/BF00247662
Y. Zhou and F. Jiao, Existence of mild solutions for fractional netural evolution equations, Comput. Math. Appl., 59(2010), 1063-1077. DOI: https://doi.org/10.1016/j.camwa.2009.06.026
Y. Zhou and F. Jiao, Nonlocal Cauchy problem for fractional evolution equations, Nonlinear Analysis: Real World Applications, 11(2010), 4465-4475. DOI: https://doi.org/10.1016/j.nonrwa.2010.05.029
- NA
Similar Articles
- C. Parthasarathy, M. Mallika Arjunan , Existence results for impulsive neutral stochastic functional integrodifferential systems with infinite delay , Malaya Journal of Matematik: Vol. 1 No. 1 (2012): Inaugural Issue :: Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2012 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.