Semilinear functional differential equations with fractional order and finite delay

Downloads

DOI:

https://doi.org/10.26637/mjm0101/010

Abstract

In this paper, we establish sufficient conditions for existence and uniqueness of solutions for semilinear functional differential equations with finite delay involving the Riemann-Liouville fractional derivative. Our approach is based on resolvent operators, the Banach contraction principle, and the nonlinear alternative of Leray-Schauder type.

Keywords:

Semilinear functional differential equation, fractional derivative, fractional integral, fixed point, mild solutions, resolvent operator

Mathematics Subject Classification:

34A08, 34K05
  • Pages: 73-81
  • Date Published: 01-09-2012
  • Vol. 1 No. 1 (2012): Inaugural Issue :: Malaya Journal of Matematik (MJM)

S. Abbas, M. Benchohra and G. N’Guerekata, Topics in Fractional DifferentialEquations, Springer, New York, 2012. DOI: https://doi.org/10.1007/978-1-4614-4036-9

R.P. Agarwal, M. Belmekki and M. Benchohra, A survey on semilinear differential equations and inclusions involving Riemann-Liouville fractional derivative, Adv. Difference Equ., 9. 46 pages, ID 981728.

E. Bajlekova, Fractional Evolution Equations in Banach Spaces, University Press Facilities, Eindhoven University of Technology, 2001.

K.Balachandran and S. Kiruthika, Existence results for fractional integrodifferential equations with nonlocal conditions via resolvent operators, Comput. Math. Appl., 62 (2011), 1350-1358. DOI: https://doi.org/10.1016/j.camwa.2011.05.001

A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003. DOI: https://doi.org/10.1007/978-0-387-21593-8

E. Hernández, D. O’Regan and K. Balachandran, On recent developments in the theory of abstract differential equations with fractional derivatives, Nonlinear Anal., 73 (2010), 3462-3471. DOI: https://doi.org/10.1016/j.na.2010.07.035

L. Kexue and J. Junxiong, Existence and uniqueness of mild solutions for abstract delay fractional differential equations, Comput. Math. Appl., 62(2011), 1398-1404. DOI: https://doi.org/10.1016/j.camwa.2011.02.038

A.A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006.

M. P. Lazarevic and A. M. Spasic, Finite-time stability analysis of fractional order time delay systems: Gronwall’s approach, Math. Comput. Modelling, 49(2009), 475-481. DOI: https://doi.org/10.1016/j.mcm.2008.09.011

K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993.

G.M. Mophou and G.M. N’Gu´ er´ ekata, Existence of mild solutions of some semilinear neutral fractional functional evolution equations with infinite delay, Appl. Math. Comput., 216(2010) 61-69. DOI: https://doi.org/10.1016/j.amc.2009.12.062

K.B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York,London, 1974.

I. Podlubny, Fractional Differential Equation, Academic Press, San Diego, 1999.

J. Prüss, Evolutionary Integral Equations and Applications, Monographs in Mathematics, 87, Birkhäuser Verlag, Basel, 1993. DOI: https://doi.org/10.1007/978-3-0348-8570-6

  • NA

Metrics

Metrics Loading ...

Published

01-09-2012

How to Cite

Mohammed Belmekki, Kheira Mekhalfi, and Sotiris K. Ntouyas. “Semilinear Functional Differential Equations With Fractional Order and Finite Delay”. Malaya Journal of Matematik, vol. 1, no. 1, Sept. 2012, pp. 73-81, doi:10.26637/mjm0101/010.