Certain subclasses of uniformly convex functions and corresponding class of starlike functions

Downloads

DOI:

https://doi.org/10.26637/mjm101/003

Abstract

In this paper, we defined a new subclass of uniformly convex functions and corresponding subclass of starlike functions with negative coefficients and obtain coefficient estimates. Further we investigate extreme points, growth and distortion bounds, radii of starlikeness and convexity and modified Hadamard products.

Keywords:

Univalent functions, convex functions, starlike functions, uniformly convex functions, uniformly starlike functions

Mathematics Subject Classification:

30C45
  • Pages: 18-26
  • Date Published: 01-01-2013
  • Vol. 1 No. 01 (2013): Malaya Journal of Matematik (MJM)

H.S. Al-Amiri, On a subckass of close-to-convex functions with negative coefficients, Mathematics, Tome, 31(1)(54)(1989), 1–7.

R. Bharati, R. Parvatham, and A.Swaminathan, On subclasses of uniformly convex functions and corresponding class of starlike functions, Tamkang J. Math., 28(1)(1997), 17–32. DOI: https://doi.org/10.5556/j.tkjm.28.1997.4330

B.A. Frasin, On the analytic functions with negative coefficients, Soochow J. Math., 31(3)(2005), 349–359.

B.A. Frasin, Some applications of fractional calculus operators to certain subclass of analytic functions with negative coefficients, Acta Universitatis Apulensis, 23(2010), 123-132.

A.W. Goodman, On uniformly convex functions, Ann. polon. Math., 56(1991), 87-92. DOI: https://doi.org/10.4064/ap-56-1-87-92

A.W. Goodman, On uniformly starlike functions, J. Math. Anal. Appl., 155(1991), 364-370. DOI: https://doi.org/10.1016/0022-247X(91)90006-L

V.P. Gupta and P.K. Jain, Certain classes univalent analytic functions with negative coefficients II, Bull. Austral. Math. Soc., 15(1976), 467-473. DOI: https://doi.org/10.1017/S0004972700022917

W. Ma and D. Minda, Uniformly convex functions, Ann. Polon. Math., 57(1992), 165-175. DOI: https://doi.org/10.4064/ap-57-2-165-175

N. Magesh, On certain subclasses of analytic and bi-univalent functions, Preprint.

G. Murugusundaramoorthy and N. Magesh, On certain subclasses of analytic functions associated with hypergeometric functions, Applied Mathematics Letters, 24(2011), 494-500. DOI: https://doi.org/10.1016/j.aml.2010.10.048

F. Running, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer.Math. Soc., 118(1993), 189-196. DOI: https://doi.org/10.1090/S0002-9939-1993-1128729-7

T. Rosy, Study on subclasses of univalent functions, Thesis, University of Madras, 2002.

S. M. Sarangi and B.A. Uralegaddi, The radius of convexity and starlikeness of certain classes of analytic functions with negative coefficients I, Atti. Accad. Naz. Lincei rend. Cl. Sci. Fis. Mat. Natur.,65(8)(1978), 34-42.

H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51(1975), 109–116. DOI: https://doi.org/10.1090/S0002-9939-1975-0369678-0

H. M. Srivastava, S. Owa and S. K. Chatterjea, A note on certain classes of starlike func- tions, Rend.Sem. Mat. Univ. Padova, 77(1987), 115–124.

B.A. Stephand and K.G. Subramanian, On a subclass of Noshiro-Type analytic functions with negative coefficients, Conference Proc. Ramanujan Mathematical Society, 1998.

K.G. Subramanian, T.V. Sudharsan, P. Balasubrahmanyam and H. Silverman, Class of uniformly starlike functions, Publ. Math. Debercen., 53(4)(1998), 309 - 315. DOI: https://doi.org/10.5486/PMD.1998.1946

K.G. Subramanian, G. Murugusundaramoorthy, P. Balasubrahmanyam and H. Silverman, Subclasses of uniformly convex and uniformly starlike functions, Math. Japonica, 42(3)(1995), 517–522.

  • NA

Metrics

PDF views
86
Jan 2013Jul 2013Jan 2014Jul 2014Jan 2015Jul 2015Jan 2016Jul 2016Jan 2017Jul 2017Jan 2018Jul 2018Jan 2019Jul 2019Jan 2020Jul 2020Jan 2021Jul 2021Jan 2022Jul 2022Jan 2023Jul 2023Jan 2024Jul 2024Jan 2025Jul 2025Jan 202614
|

Published

01-01-2013

How to Cite

N. Magesh, and V. Prameela. “Certain Subclasses of Uniformly Convex Functions and Corresponding Class of Starlike Functions”. Malaya Journal of Matematik, vol. 1, no. 01, Jan. 2013, pp. 18-26, doi:10.26637/mjm101/003.