Certain subclasses of uniformly convex functions and corresponding class of starlike functions
Downloads
DOI:
https://doi.org/10.26637/mjm101/003Abstract
In this paper, we defined a new subclass of uniformly convex functions and corresponding subclass of starlike functions with negative coefficients and obtain coefficient estimates. Further we investigate extreme points, growth and distortion bounds, radii of starlikeness and convexity and modified Hadamard products.
Keywords:
Univalent functions, convex functions, starlike functions, uniformly convex functions, uniformly starlike functionsMathematics Subject Classification:
30C45- Pages: 18-26
- Date Published: 01-01-2013
- Vol. 1 No. 01 (2013): Malaya Journal of Matematik (MJM)
H.S. Al-Amiri, On a subckass of close-to-convex functions with negative coefficients, Mathematics, Tome, 31(1)(54)(1989), 1–7.
R. Bharati, R. Parvatham, and A.Swaminathan, On subclasses of uniformly convex functions and corresponding class of starlike functions, Tamkang J. Math., 28(1)(1997), 17–32. DOI: https://doi.org/10.5556/j.tkjm.28.1997.4330
B.A. Frasin, On the analytic functions with negative coefficients, Soochow J. Math., 31(3)(2005), 349–359.
B.A. Frasin, Some applications of fractional calculus operators to certain subclass of analytic functions with negative coefficients, Acta Universitatis Apulensis, 23(2010), 123-132.
A.W. Goodman, On uniformly convex functions, Ann. polon. Math., 56(1991), 87-92. DOI: https://doi.org/10.4064/ap-56-1-87-92
A.W. Goodman, On uniformly starlike functions, J. Math. Anal. Appl., 155(1991), 364-370. DOI: https://doi.org/10.1016/0022-247X(91)90006-L
V.P. Gupta and P.K. Jain, Certain classes univalent analytic functions with negative coefficients II, Bull. Austral. Math. Soc., 15(1976), 467-473. DOI: https://doi.org/10.1017/S0004972700022917
W. Ma and D. Minda, Uniformly convex functions, Ann. Polon. Math., 57(1992), 165-175. DOI: https://doi.org/10.4064/ap-57-2-165-175
N. Magesh, On certain subclasses of analytic and bi-univalent functions, Preprint.
G. Murugusundaramoorthy and N. Magesh, On certain subclasses of analytic functions associated with hypergeometric functions, Applied Mathematics Letters, 24(2011), 494-500. DOI: https://doi.org/10.1016/j.aml.2010.10.048
F. Running, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer.Math. Soc., 118(1993), 189-196. DOI: https://doi.org/10.1090/S0002-9939-1993-1128729-7
T. Rosy, Study on subclasses of univalent functions, Thesis, University of Madras, 2002.
S. M. Sarangi and B.A. Uralegaddi, The radius of convexity and starlikeness of certain classes of analytic functions with negative coefficients I, Atti. Accad. Naz. Lincei rend. Cl. Sci. Fis. Mat. Natur.,65(8)(1978), 34-42.
H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51(1975), 109–116. DOI: https://doi.org/10.1090/S0002-9939-1975-0369678-0
H. M. Srivastava, S. Owa and S. K. Chatterjea, A note on certain classes of starlike func- tions, Rend.Sem. Mat. Univ. Padova, 77(1987), 115–124.
B.A. Stephand and K.G. Subramanian, On a subclass of Noshiro-Type analytic functions with negative coefficients, Conference Proc. Ramanujan Mathematical Society, 1998.
K.G. Subramanian, T.V. Sudharsan, P. Balasubrahmanyam and H. Silverman, Class of uniformly starlike functions, Publ. Math. Debercen., 53(4)(1998), 309 - 315. DOI: https://doi.org/10.5486/PMD.1998.1946
K.G. Subramanian, G. Murugusundaramoorthy, P. Balasubrahmanyam and H. Silverman, Subclasses of uniformly convex and uniformly starlike functions, Math. Japonica, 42(3)(1995), 517–522.
- NA
Similar Articles
- J. Vasundhara Devi, R.V.G. Ravi Kumar, N. Giribabu, On graph differential equations and its associated matrix differential equations , Malaya Journal of Matematik: Vol. 1 No. 01 (2013): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2013 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.