Oscillation results for third order nonlinear neutral differential equations of mixed type

Downloads

DOI:

https://doi.org/10.26637/mjm101/005

Abstract

Some oscillation results are obtained for the third order nonlinear mixed type neutral differential equations of the form
\begin{align*}
&\left(\left(x(t)+b(t) x\left(t-\tau_1\right)+c(t) x\left(t+\tau_2\right)\right)^\alpha\right)^{\prime \prime \prime}\\&=q(t) x^\beta\left(t-\sigma_1\right)+p(t) x^\gamma\left(t+\sigma_2\right), t \geq t_0
\end{align*}
where \(\alpha, \beta\) and \(\gamma\) are ratios of odd positive integers \(\tau_1, \tau_2, \sigma_1\) and \(\sigma_2\) are positive constants.

Keywords:

Oscillation, neutral differential equations

Mathematics Subject Classification:

34C15
  • Ethiraju Thandapani Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chennai -600 005, India.
  • Renu Rama Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chennai -600 005, India.
  • Pages: 38-49
  • Date Published: 01-01-2013
  • Vol. 1 No. 01 (2013): Malaya Journal of Matematik (MJM)

R. P. Agarwal, M. F. Aktas, and A. Tiryaki, On oscillation criteria for third order nonlinear delay differential equations, Arch. Math., 45(2009), 1-18.

R. P. Agarwal, B. Baculáková, J. Dˇ zurina and T.Li, Oscillation of third-order nonlinear functional differential equations with mixed arguments, Acta Math. Hungar., 134(2011), 54-67. DOI: https://doi.org/10.1007/s10474-011-0120-4

R. P. Agarwal, S. R. Grace and D. O’Regan, Oscillation Theory for Difference and Functional Differential Equation, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000. DOI: https://doi.org/10.1007/978-94-015-9401-1_2

B. Bacul´ıková and J. Dˇ zurina, Oscillation of third-order functional differential equations, Elec. J.Qual. Theo. Diff. Equ., 43(2010), 1-10. DOI: https://doi.org/10.14232/ejqtde.2010.1.43

B. Bacul´ıková and J. Dˇ zurina, Oscillation of third-order neutral differential equations, Math. Comput.Modelling, 52(2010), 215-226. DOI: https://doi.org/10.1016/j.mcm.2010.02.011

B. Bacul´ıková and J. Dˇ zurina, On the aymptotic behavior of a class of third order nonlinear neutral differential equations, Cent. European J. Math., 8(2010), 1091-1103. DOI: https://doi.org/10.2478/s11533-010-0072-x

B. Bacul´ıková and J. Dˇ zurina, Oscillation of third-order nonlinear differential equations, Appl. Math.Lett., (2011), 466-470. DOI: https://doi.org/10.1016/j.aml.2010.10.043

B. Bacul´ıková, E. M. Elabbasy, S. H. Saker, and J. Dˇ zurina, Oscillation criteria for third-order non-linear differential euqations, Math. Slovaca, 58(2008), 201-220. DOI: https://doi.org/10.2478/s12175-008-0068-1

T. Candan and R. S. Dahiya, Functional differential equations of third order, Elec. J. Diff. Equ.,12(2005), 47-56.

P. Das, Oscillation criteria for odd order neutral equations, J. Math. Anal. Appl., 188(1994), 245-257. DOI: https://doi.org/10.1006/jmaa.1994.1425

K. Gopalsamy, B. S. Lalli and B. G. Zhang, Oscillation of odd order neutral differential equations, Czech. Math. J., 42(1992), 313-323. DOI: https://doi.org/10.21136/CMJ.1992.128330

S.R.Grace, Oscillation criteria for nth order neutral functional differential equations, J. Math. Anal.Appl., 184(1994), 44-55. DOI: https://doi.org/10.1006/jmaa.1994.1182

S. R. Grace, On oscillation of mixed neutral equations, J. Math. Anal. Appl., 194(1995), 377-388. DOI: https://doi.org/10.1006/jmaa.1995.1306

S. R. Grace, Oscillation of mixed neutral fractional differential equations, Appl. Math. Comp.,68(1995), 1-13. DOI: https://doi.org/10.1016/0096-3003(94)00075-F

S. R. Grace, R. P. Agarwal, R. Pavani, and E. Thandapani, On the oscillation of certain third order nonlinear functional differential equations, Appl. Math. Comput., 202(2008), 102-112. DOI: https://doi.org/10.1016/j.amc.2008.01.025

S.R.Grace and B.S.Lalli, Oscillation theorems for certain neutral functional differential equations with periodic cofficients, Dynam. Systems Appl., 3(1994), 85-93.

J. R. Graef, R. Savithri, and E. Thandapani, Oscillatory properties of third order neutral delay differential equations, Disc. Cont. Dyn. Sys. A, 2003, 342-350.

T. Li and E. Thandapani, Oscillation of solutions to odd-order nonlinear neutral functional differential equations, Elec. J. Diff. Equ., 23(2011), 1-12. DOI: https://doi.org/10.14232/ejqtde.2011.1.76

T.Li, C.Zhang and G.Xing, Oscillation of third order neutral delay differential equations, Abstract and Applied Analysis, 2012(2012), 1-11. DOI: https://doi.org/10.1155/2012/569201

S. H. Saker and J. Dˇ zurina, On the oscillation of certain class of third-order nonlinear delay differential equations, Math. Bohemica, 135(2010), 225-237. DOI: https://doi.org/10.21136/MB.2010.140700

E. Thandapani and T. Li, On the oscillation of third-order quasi-linear neutral functional differential equations, Arch. Math., 47(2011), 181-199. DOI: https://doi.org/10.1186/1687-1847-2011-45

J. R. Yau, Oscillation of higher order neutral differential equations of mixed type, Israel J. Math.,115(2000), 125-136. DOI: https://doi.org/10.1007/BF02810583

C. Zhang, T. Li, B. Sun and E. Thandapani, On the oscillation of higher-order half-linear delay differential equations, Appl. Math. Lett., 24(2011), 1618-1621. DOI: https://doi.org/10.1016/j.aml.2011.04.015

  • NA

Metrics

Metrics Loading ...

Published

01-01-2013

How to Cite

Ethiraju Thandapani, and Renu Rama. “Oscillation Results for Third Order Nonlinear Neutral Differential Equations of Mixed Type”. Malaya Journal of Matematik, vol. 1, no. 01, Jan. 2013, pp. 38-49, doi:10.26637/mjm101/005.