Discontinuous dynamical system represents the Logistic retarded functional equation with two different delays

Downloads

DOI:

https://doi.org/10.26637/mjm101/006

Abstract

In this work we are concerned with the discontinuous dynamical system representing the problem of the logistic retarded functional equation with two different delays,
x(t)=ρx(tr1)[1x(tr2)],t(0,T],x(t)=x0,t0.
The existence of a unique solution xL1[0,T] which is continuously dependence on the initial data, will be proved. The local stability at the equilibrium points will be studied. The bifurcation analysis and chaos will be discussed.

Keywords:

Logistic functional equation, existence, uniqueness, equilibrium points, local stability, Chaos and Bifurcation

Mathematics Subject Classification:

39A05, 39A28, 39A30
  • A. M. A. El-Sayed Department of Mathematics, Faculty of Science, Alexandria University,Alexandria, Egypt.
  • M. E. Nasr Department of Mathematics,Faculty of Science, Benha University, Benha 13518, Egypt.
  • Pages: 50-56
  • Date Published: 01-01-2013
  • Vol. 1 No. 01 (2013): Malaya Journal of Matematik (MJM)

L. Berezansky and E. Braverman, On stability of some linear and nonlinear delay differential equations, J. Math. Anal. Appl., 314(2006), 9-15. DOI: https://doi.org/10.1016/j.jmaa.2005.03.103

A. El-Sayed, A. El-Mesiry and H. EL-Saka, On the fractional-order logistic equation, Applied Mathematics Letters, 20(2007), 817-823. DOI: https://doi.org/10.1016/j.aml.2006.08.013

A. M. A. El-Sayed and M. E. Nasr, Existence of uniformly stable solutions of nonautonomous discontinuous dynamical systems, J. Egypt Math. Soc.,19(1)(2011),10-16. DOI: https://doi.org/10.1016/j.joems.2011.09.006

A. M. A. El-Sayed and M. E. Nasr, On some dynamical properties of discontinuous dynamical systems, American Academic & Scholarly Research Journal, 2(1)(2012), 28-32. DOI: https://doi.org/10.26634/jmat.1.1.1667

A. M. A. El-Sayed and M. E. Nasr, Dynamic properties of the predator-prey discontinuous dynamical system, J. Z. Naturforsch. A, 67a(2012), 57-60. DOI: https://doi.org/10.5560/zna.2011-0051

H. EL-Saka, E. Ahmed, M. I. Shehata, A. M. A. El-Sayed, On stability, persistence, and Hopf bifurcation in fractional order dynamical systems, Nonlinear Dyn, 56(2009), 121-126. DOI: https://doi.org/10.1007/s11071-008-9383-x

J. Hale and S.M. Verduyn Lunel, Introduction to functional differential equations, springrverlag, New york, 1993. DOI: https://doi.org/10.1007/978-1-4612-4342-7

Y. Hamaya and A. Redkina, On global asymptotic stability of nonlinear stochastic difference equations with delays, Internat. J.Diff., 1(2006), 101-118.

Y. Kuang, Dely differential equations with applications in population dynamics, Academic Press, New York, 1993.

J.D. Murray, Mathematical Biology I: An Introduction, Springer-Verlag, Berlin, 3rd edition, 2002.

  • NA

Metrics

PDF views
85
Jan 2013Jul 2013Jan 2014Jul 2014Jan 2015Jul 2015Jan 2016Jul 2016Jan 2017Jul 2017Jan 2018Jul 2018Jan 2019Jul 2019Jan 2020Jul 2020Jan 2021Jul 2021Jan 2022Jul 2022Jan 2023Jul 2023Jan 2024Jul 2024Jan 2025Jul 2025Jan 202611
|

Published

01-01-2013

How to Cite

A. M. A. El-Sayed, and M. E. Nasr. “Discontinuous Dynamical System Represents the Logistic Retarded Functional Equation With Two Different Delays”. Malaya Journal of Matematik, vol. 1, no. 01, Jan. 2013, pp. 50-56, doi:10.26637/mjm101/006.