Discontinuous dynamical system represents the Logistic retarded functional equation with two different delays
Downloads
DOI:
https://doi.org/10.26637/mjm101/006Abstract
In this work we are concerned with the discontinuous dynamical system representing the problem of the logistic retarded functional equation with two different delays,
$$
\begin{aligned}
& x(t)=\rho x\left(t-r_1\right)\left[1-x\left(t-r_2\right)\right], \quad t \in(0, T], \\
& x(t)=x_0, \quad t \leq 0 .
\end{aligned}
$$
The existence of a unique solution \(x \in L^1[0, T]\) which is continuously dependence on the initial data, will be proved. The local stability at the equilibrium points will be studied. The bifurcation analysis and chaos will be discussed.
Keywords:
Logistic functional equation, existence, uniqueness, equilibrium points, local stability, Chaos and BifurcationMathematics Subject Classification:
39A05, 39A28, 39A30- Pages: 50-56
- Date Published: 01-01-2013
- Vol. 1 No. 01 (2013): Malaya Journal of Matematik (MJM)
L. Berezansky and E. Braverman, On stability of some linear and nonlinear delay differential equations, J. Math. Anal. Appl., 314(2006), 9-15. DOI: https://doi.org/10.1016/j.jmaa.2005.03.103
A. El-Sayed, A. El-Mesiry and H. EL-Saka, On the fractional-order logistic equation, Applied Mathematics Letters, 20(2007), 817-823. DOI: https://doi.org/10.1016/j.aml.2006.08.013
A. M. A. El-Sayed and M. E. Nasr, Existence of uniformly stable solutions of nonautonomous discontinuous dynamical systems, J. Egypt Math. Soc.,19(1)(2011),10-16. DOI: https://doi.org/10.1016/j.joems.2011.09.006
A. M. A. El-Sayed and M. E. Nasr, On some dynamical properties of discontinuous dynamical systems, American Academic & Scholarly Research Journal, 2(1)(2012), 28-32. DOI: https://doi.org/10.26634/jmat.1.1.1667
A. M. A. El-Sayed and M. E. Nasr, Dynamic properties of the predator-prey discontinuous dynamical system, J. Z. Naturforsch. A, 67a(2012), 57-60. DOI: https://doi.org/10.5560/zna.2011-0051
H. EL-Saka, E. Ahmed, M. I. Shehata, A. M. A. El-Sayed, On stability, persistence, and Hopf bifurcation in fractional order dynamical systems, Nonlinear Dyn, 56(2009), 121-126. DOI: https://doi.org/10.1007/s11071-008-9383-x
J. Hale and S.M. Verduyn Lunel, Introduction to functional differential equations, springrverlag, New york, 1993. DOI: https://doi.org/10.1007/978-1-4612-4342-7
Y. Hamaya and A. Redkina, On global asymptotic stability of nonlinear stochastic difference equations with delays, Internat. J.Diff., 1(2006), 101-118.
Y. Kuang, Dely differential equations with applications in population dynamics, Academic Press, New York, 1993.
J.D. Murray, Mathematical Biology I: An Introduction, Springer-Verlag, Berlin, 3rd edition, 2002.
- NA
Similar Articles
- P. M. Dhakane, D. B. Pachpatte, On a nonlinear functional second order integrodifferential equation in Banach Spaces , Malaya Journal of Matematik: Vol. 1 No. 01 (2013): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2013 MJM

This work is licensed under a Creative Commons Attribution 4.0 International License.