On extended \(M\)−series
Downloads
DOI:
https://doi.org/10.26637/mjm101/007Abstract
This paper deals with extended \(M\)-series, which is extension of the generalized \(M\)-series [12]. Mittag-Leffler function, \(\omega\)- hypergeometric function, generalized \(\omega\)-Gauss hypergeometric function, \(\omega\)-confluent hypergeometric function, Bessel-Maitland function can be deduced as special cases of our finding. Moreover, we obtain some theorem for extended \(M\)-series by using fractional calculus operators and many results associated with Riemann-Liouville, Weyl and ErdelyiKober operators. We begin our study from the following definitions.
Keywords:
Saigo- Meada operators, Pathway fractional integral operator, Extended \(M\)-seriesMathematics Subject Classification:
26A33, 44A15, 33C60, 33E12- Pages: 57-69
- Date Published: 01-01-2013
- Vol. 1 No. 01 (2013): Malaya Journal of Matematik (MJM)
A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, North Holland Math. Studies, 204, Amsterdam etc, 2006.
A. M. Mathai and R. K. Saxena, The H-function with Applications in Statistics and other Disciplines, Halsted Press, New York-London-Sydney-Toronto, 1978.
A. M. Mathai and H. J. Habould, Special Functions for Applied Scientists, Springer, New York, 2008. DOI: https://doi.org/10.1007/978-0-387-75894-7
A. M. Mathai, R. K. Saxena and H. J. Haubold, The H-function: Theory and Applications, Springer, New York, 2010. DOI: https://doi.org/10.1007/978-1-4419-0916-9
A. M. Mathai, A pathway to matrix-variate gamma and normal densities, Linear Algebra and Its Applications, 396(2005), 317-328. DOI: https://doi.org/10.1016/j.laa.2004.09.022
A. M. Mathai and H. J. Haubold, On generalized distributions and path-ways, Physics Letter, 372(2008), 2109-2113. DOI: https://doi.org/10.1016/j.physleta.2007.10.084
A. M. Mathai and H. J. Haubold, Pathway model, superstatistics, Tsallis statistics and a generalize measure of entropy, Physica A, 375(2007), 110-122. DOI: https://doi.org/10.1016/j.physa.2006.09.002
C. Fox, The G and H-functions as symmetrical Fourier Kernels, Trans. Amer. Math. Soc., 98(1961), 395-429. DOI: https://doi.org/10.2307/1993339
E. M. Wright, The asymptotic expansion of the generalized hypergeometric function, J. London Math. Soc., 10(1935), 287-293. DOI: https://doi.org/10.1112/jlms/s1-10.40.286
M. Saigo, A Remark on integral operators involving the Gauss Hypergeometric functions, Math. Rep. College General Ed. Kyushu Univ., 11(1978), 135-143.
M. Saigo and N. Meada, More generalization of fractional calculus, In: Transform Methods and Special Functions (Eds: P. Ruse v, I. Dimovski, V. Kiryakova, Proc. 2nd Int. workshop, Varna, 1996), Sofia, 1998, 386-400.
M. Sharma and Renu Jain, A note on generalized M-Series as a special function of fractional calculus, Fract. Calc. Appl. Anal., 12(4)(2009), 449-452.
N. A. Virchenko, S. L. Kalla and A. Al-Zamel, Some results on a generalized hypergeometric function, Integral Transform Spec. Funct., 12(1)(2001), 89-100. DOI: https://doi.org/10.1080/10652460108819336
N. A. Virchenko, On some generalizations of the functions of hypergeometric type, Fract. Calc. Appl. Anal., 2(3)(1999), 233-244.
O. I. Marichev, Handbook of Integral Transforms and Higher Transcendental Functions. Theory and Algorithmic Tables, Ellis Horwood, Chichester [John Wiley and Sons], New York, 1983.
R. K. Saxena, A remark on a paper on M-series, Fract. Calc. Appl. Anal., 12(1)(2009), 109-110.
Seema S. Nair, Pathway fractional integration operator, Fract. Calc. Appl. Anal., 12(3)(2009), 237-252.
S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, New York, 1993.
T. R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J., 19(1971), 7-15.
V. S. Kiryakova, Generalized Fractional Calculus and Applications, Pitman Research Notes in Mathematics Series No. 301, Longman and J. Wiley, Harlow and New York, 1994.
Y. Ben Nakhi and S. L. Kalla, A generalized beta function and associated probability density, Int. J.Math. Math. Sci., 30(8)(2002), 467-478. DOI: https://doi.org/10.1155/S0161171202007512
- NA
Similar Articles
- A. Benaissa Cherif, F. Z. Ladrani, A. Hammoudi , Oscillation theorems for higher order neutral nonlinear dynamic equations on time scales , Malaya Journal of Matematik: Vol. 4 No. 04 (2016): Malaya Journal of Matematik (MJM)
- Ethiraju Thandapani, Renu Rama, Oscillation results for third order nonlinear neutral differential equations of mixed type , Malaya Journal of Matematik: Vol. 1 No. 01 (2013): Malaya Journal of Matematik (MJM)
- Ethiraju Thandapani, Sivaraj Tamilvanan, New oscillation criteria for forced superlinear neutral type differential equations , Malaya Journal of Matematik: Vol. 1 No. 1 (2012): Inaugural Issue :: Malaya Journal of Matematik (MJM)
- R. Arul , M. Mani , On the oscillation of third order quasilinear delay differential equations with Maxima , Malaya Journal of Matematik: Vol. 2 No. 04 (2014): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2013 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.