Existence and controllability results for damped second order impulsive neutral functional differential systems with state-dependent delay in Banach spaces

Downloads

DOI:

https://doi.org/10.26637/mjm101/008

Abstract

In this paper, we investigate the existence and controllability of mild solutions for a damped second order impulsive neutral functional differential equation with state-dependent delay in Banach spaces. The results are obtained by using Sadovskii’s fixed point theorem combined with the theories of a strongly continuous cosine family of bounded linear operators. Finally, an example is provided to illustrate the main results.

Keywords:

Damped second order differential equations, impulsive neutral differential equations, controllability, state-dependent delay, cosine function, mild solution, fixed point.

Mathematics Subject Classification:

34A37, 93B05
  • Pages: 70-85
  • Date Published: 01-01-2013
  • Vol. 1 No. 01 (2013): Malaya Journal of Matematik (MJM)

V. Lakshmikantham, D. Bainov, P.S. Simeonov, Theory of impulsive differential equations, World Scientific, Singapore, 1989. DOI: https://doi.org/10.1142/0906

A. M. Samoilenko, N. A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore, 1995. DOI: https://doi.org/10.1142/2892

D. Bainov, P. Simeonov, Impulsive differential equations, John Wiley & Sons, New York, 1993.

Y. -K. Chang, A. Anguraj, M. Mallika Arjunan, Existence results for non-densely defined neutral impulsive differential inclusions with nonlocal conditions, J. Appl. Math. Comp., 28(2008), 79–91. DOI: https://doi.org/10.1007/s12190-008-0078-8

Y. -K. Chang, A. Anguraj, M. Mallika Arjunan, Existence results for impulsive neutral functional differential equations with infinite delay, Nonlinear Anal. Hybrid Systems, 2(2008), 209–218. DOI: https://doi.org/10.1016/j.nahs.2007.10.001

E. Hernandez, A second order impulsive Cauchy problem, Int. J. Math. Math. Sci., 31(8)(2002), 45–461. DOI: https://doi.org/10.1155/S0161171202012735

E. Hernandez, H. Henriquez, Impulsive partial neutral differential equations, Appl. Math. Lett.,19(3)(2006), 215–222. DOI: https://doi.org/10.1016/j.aml.2005.04.005

E. Hernandez, M. Rabello, H. Henriquez, Existence of solutions for impulsive partial neutral functional differential equations, J. Math. Anal. Appl., 331(2007), 1135–1158. DOI: https://doi.org/10.1016/j.jmaa.2006.09.043

J. H. Liu, Nonlinear impulsive evolution equations, Dynam. Contin. Discrete Impuls. Systems, 6(1)(1999), 77–85.

Y. Rogovchenko, Impulsive evolution systems: main results and new trends, Dynam. Contin. Discrete Impuls. Systems, 3(1)(1997), 57–88.

Y. Rogovchenko, Nonlinear impulse evolution systems and applications to population models, J. Math. Anal. Appl., 207(2)(1997), 300–315. DOI: https://doi.org/10.1006/jmaa.1997.5245

A. Cabada, J. Nieto, D. Franco and S.J. Trofimchuk, A generalization of the monotone method for second order periodic boundary value problem with impulses at fixed points, Dynam. Contin. Discrete Impuls. System, 7 (1)(2000), 145–158.

M. Benchohra, J. Henderson and S.K. Ntouyas, Impulsive differential equations and inclusions, Hindawi Publishing Corporation, New York, 2006. DOI: https://doi.org/10.1155/9789775945501

K. Balachandran, S. M. Anthoni, Controllability of second-order semilinear neutral functional differential systems in Banach spaces, Comput. Math. Appl., 41(2001), 1223– 1235. DOI: https://doi.org/10.1016/S0898-1221(01)00093-1

J. M. Jeong, H. G. Kim, Controllability for semilinear functional integrodifferential equations, Bull.Korean Math. Soc., 46(2009), 463–475. DOI: https://doi.org/10.4134/BKMS.2009.46.3.463

S. K. Ntouyas, D. O’Regan, Some remarks on controllability of evolution equations in Banach spaces, Electron. J. Differential Equations, 79(2009), 1–6.

J. Y. Park, H. K. Han, Controllability for some second order differential equations, Bull. Korean Math. Soc., 34 (1997), 411–419.

J. K. Park, S. H. Park, Y. H. Kang, Controllability of second-order impulsive neutral functional differential inclusions in Banach spaces, Math. Methods Appl. Sci., 33(3)(2010), 249–262. DOI: https://doi.org/10.1002/mma.1165

B. Radhakrishnan, K. Balachandran, Controllability of neutral evolution integrodiffe- rential systems with state-dependent delay, J. Optim. Theory Appl., 153(1)(2012), 85–97. DOI: https://doi.org/10.1007/s10957-011-9934-z

R. Sakthivel, N. I. Mahmudov, J. H. Kim, On controllability of second-order nonlinear impulsive differential systems, Nonlinear Anal., 71(2009), 45–52. DOI: https://doi.org/10.1016/j.na.2008.10.029

G. Arthi, K. Balachandran, Controllability of damped second-order impulsive neutral functional differential systems with infinite delay, J. Optim. Theory Appl., 152(2012), 799–813. DOI: https://doi.org/10.1007/s10957-011-9926-z

G. Arthi, K. Balachandran, Controllability of damped second-order neutral functional differential systems with impulses, Taiwan. J. Math., 16(2012), 89–106. DOI: https://doi.org/10.11650/twjm/1500406529

E. Hernandez, K. Balachandran, N. Annapoorani, Existence results for a damped second order abstract functional differential equation with impulses, Math. Comput. Model., 50(2009), 1583–1594. DOI: https://doi.org/10.1016/j.mcm.2009.09.007

Y. Lin, N. Tanaka, Nonlinear abstract wave equations with strong damping, J. Math. Anal. Appl.,225(1998), 46–61. DOI: https://doi.org/10.1006/jmaa.1998.5999

G. F. Webb, Existence and asymptotic behaviour for a strongly damped nonlinear wave equations, Can. J. Math., 32(1980), 631–643. DOI: https://doi.org/10.4153/CJM-1980-049-5

J. K. Hale, S.M.V. Lunel, Introduction to Functional Differential Equations: Applied Mathematical Sciences, Vol. 99, Springer-Verlag, New York, (1993). DOI: https://doi.org/10.1007/978-1-4612-4342-7

E. Hernandez, H. Henriquez, Existence of periodic solutions of partial neutral functional differential equations with unbounded delay, J. Math. Anal. Appl., 221(2)(1998), 499–522. DOI: https://doi.org/10.1006/jmaa.1997.5899

E. Hernandez, H. Henriquez, Existence results for partial neutral functional differential equations with unbounded delay, J. Math. Anal. Appl., 221(2)(1998), 452–475. DOI: https://doi.org/10.1006/jmaa.1997.5875

W. G. Aiello, H. I. Freedman, J. Wu, Analysis of a model representing stage-structured population growth with state-dependent time delay, SIAM J. Appl. Math., 52(3)(1992), 855–869. DOI: https://doi.org/10.1137/0152048

A. Anguraj, M. Mallika Arjunan, E. Hernandez, Existence results for an impulsive neutral functional differential equation with state-dependent delay, Appl. Anal., 86(2007), 861–872. DOI: https://doi.org/10.1080/00036810701354995

M. Bartha, Periodic solutions for differential equations with state-dependent delay and positive feedback, Nonlinear Anal. TMA, 53(6(2003), 839–857. DOI: https://doi.org/10.1016/S0362-546X(03)00039-7

Y. Cao, J. Fan, T. C. Gard, The effects of state-dependent time delay on a stage-structured population growth model, Nonlinear Anal. TMA, 19(2)(1992), 95–105. DOI: https://doi.org/10.1016/0362-546X(92)90113-S

F. Chen, D. Sun, J. Shi, Periodicity in a food-limited population model with toxicants and state-dependent delays, J. Math. Anal. Appl., 288(2003), 136–146. DOI: https://doi.org/10.1016/S0022-247X(03)00586-9

A. Domoshnitsky, M. Drakhlin, E. Litsyn, On equations with delay depending on solution, Nonlinear Anal. TMA, 49(5)(2002), 689–701. DOI: https://doi.org/10.1016/S0362-546X(01)00132-8

F. Hartung, Parameter estimation by quasilinearization in functional differential equations with state-dependent delays: a numerical study. Proceedings of the Third World Congress of Nonlinear Analysts, Part 7 (Catania, 2000), Nonlinear Anal. TMA, 47(7)(2001), 4557–4566. DOI: https://doi.org/10.1016/S0362-546X(01)00569-7

F. Hartung, T. L. Herdman, J. Turin, Parameter identification in classes of neutral differential equations with state-dependent delays, Nonlinear Anal. TMA, 39(3)(2000), 305–325. DOI: https://doi.org/10.1016/S0362-546X(98)00169-2

F. Hartung, T. Krisztin, H. -O. Walther, J. Wu, Functional Differential Equations with State-Dependent Delays: Theory and Applications, in: A. Canada, P. Drabek, A. Fonda (Eds.), Handbook of Differential Equations : Ordinary Differential Equations, Elsevier B. V, 2006. DOI: https://doi.org/10.1016/S1874-5725(06)80009-X

F. Hartung, J. Turi, Identification of parameters in delay equations with state-dependent delays, Nonlinear Anal. TMA, 29(11)(1997), 1303–1318. DOI: https://doi.org/10.1016/S0362-546X(96)00100-9

E. Hernandez, Existence of solutions for a second order abstract functional differential equation with state-dependent delay, Electron. J. Differential Equations, 21(2007), 1–10.

E. Hernandez, R. Sakthivel, S. Tanaka, Existence results for impulsive evolution differential equations with state-dependent delay, Electron. J. Differential Equations, 28(2008), 1–11.

E. Hernandez, M. A. McKibben, H. Henriquez, Existence results for partial neutral functional differential equations with state-dependent delay, Math. Comput. Modelling, 49(2009), 1260–1267. DOI: https://doi.org/10.1016/j.mcm.2008.07.011

M. Mallika Arjunan, V. Kavitha, Existence results for impulsive neutral functional differential equations with statedependent delay, Electron. J. Qual. Theory Differ. Equ., 26(2009), 113. DOI: https://doi.org/10.14232/ejqtde.2009.1.26

Y. -K. Chang, M. Mallika Arjunan, V. Kavitha, Existence results for a second order impulsive functional differential equation with statedependent delay, Differ. Equ. Appl., 1(3)(2009), 325–339. DOI: https://doi.org/10.7153/dea-01-17

E. Hernandez, A. Anguraj, M. Mallika Arjunan, Existence results for an impulsive second order differential equation with state-dependent delay, Dynam. Contin. Discrete Impuls. Systems, 17(2010), 287–301.

C. C. Travis, G. F. Webb, Compactness, regularity, and uniform continuity properties of strongly continuous cosine families, Houston J. Math., 3(4)(1977), 555–567.

J. Kisynski, On cosine operator functions and one parameter group of operators, Studia Math., 49(1972), 93–105. DOI: https://doi.org/10.4064/sm-44-1-93-105

C. C. Travis, G. F. Webb, Cosine families and abstract nonlinear second order differential equations, Acta Math. Acad. Sci. Hungaricae, 32(1978), 76–96. DOI: https://doi.org/10.1007/BF01902205

E. Hernandez, M. Pierri, G. Uniao, Existence results for a impulsive abstract partial differential equation with state-dependent delay, Comput. Math. Appl., 52(2006), 411–420. DOI: https://doi.org/10.1016/j.camwa.2006.03.022

B. N. Sadovskii, On a fixed point principle, Funct. Anal. Appl., 1(1967), 74–76. DOI: https://doi.org/10.1007/BF01076087

Y. Hino, S. Murakami, T. Naito, Functional-Differential Equations with Infinite Delay, Lecture Notes in Mathematics, 1473. Springer-Verlag, Berlin, 1991. DOI: https://doi.org/10.1007/BFb0084432

E. Hernandez, A. Prokopczyk, L. A. Ladeira, A note on partial functional differential equations with state-dependent delay, Nonlinear Anal. RWA, 7(2006), 510–519. DOI: https://doi.org/10.1016/j.nonrwa.2005.03.014

H. O. Fattorini, Second Order Linear Differential Equations in Banach Spaces, North- Holland Mathematics Studies, Vol. 108, North-Holland, Amsterdam, 1985.

  • NA

Metrics

Metrics Loading ...

Published

01-01-2013

How to Cite

N.Y. Nadaf, and M. Mallika Arjunan. “Existence and Controllability Results for Damped Second Order Impulsive Neutral Functional Differential Systems With State-Dependent Delay in Banach Spaces”. Malaya Journal of Matematik, vol. 1, no. 01, Jan. 2013, pp. 70-85, doi:10.26637/mjm101/008.