Relative controllability of fractional stochastic dynamical systems with multiple delays in control

Downloads

DOI:

https://doi.org/10.26637/mjm101/009

Abstract

This paper is concerned with the global relative controllability of fractional stochastic dynamical systems with multiple delays in control for finite dimensional spaces. Sufficient conditions for controllability results are obtained using Banach fixed point theorem and the controllability Grammian matrix which is defined by the Mittag-Leffler matrix function. An example is provided to illustrate the theory.

Keywords:

Control delay, Relative controllability, Stochastic systems, Fractional differential equations, Mittag-Leffler matrix function

Mathematics Subject Classification:

34G20, 34G60, 34A37
  • Toufik Guendouzi Laboratory of Stochastic Models, Statistic and Applications, Tahar Moulay University, 20000 Saida, Algeria.
  • Iqbal Hamada Laboratory of Stochastic Models, Statistic and Applications, Tahar Moulay University, 20000 Saida, Algeria.
  • Pages: 86-97
  • Date Published: 01-01-2013
  • Vol. 1 No. 01 (2013): Malaya Journal of Matematik (MJM)

J.L. Adams, T.T. Hartley, Finite time controllability of fractional order systems, J. Comput. Nonlinear Dyn., 3(2008), 021402-1-021402-5. DOI: https://doi.org/10.1115/1.2833919

R.P. Agarwal, S. Baghli, M. Benchohra, Controllability for semilinear functional and neutral functional evolution equations with infinite delay in Frchet spaces, Applied Mathematics and Optimization, 60(2009), 253-274. DOI: https://doi.org/10.1007/s00245-009-9073-1

K. Balachandran, S. Karthikeyan, J.Y. Park, Controllability of stochastic systems with distributed delays in control, Internat. J. Control, 82(2009), 1288-1296. DOI: https://doi.org/10.1080/00207170802549537

K. Balachandran, J. Kokila, On the controllability of fractional dynamical systems, Int. J. Appl. Math. Comput. Sci., 22(3)(2012), 523-531. DOI: https://doi.org/10.2478/v10006-012-0039-0

Y.Q. Chen, H.S. Ahn, D. Xue, Robust controllability of interval fractional order linear time invariant systems, Signal Process, 86(2006), 2794-2802. DOI: https://doi.org/10.1016/j.sigpro.2006.02.021

X. Fu, K. Mei, Approximate controllability of semilinear partial functional differential systems, Journal of Dynamical and Control Systems, 15(2009), 425-443. DOI: https://doi.org/10.1007/s10883-009-9068-x

A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.

J. Klamka, Constrained controllability of semilinear systems with delays, Nonlinear Dynamics, 56(2009), 169-177. DOI: https://doi.org/10.1007/s11071-008-9389-4

J. Klamka, Constrained approximate controllability, IEEE Transactions on Automatic Control, 45(2000), 1745-1749. DOI: https://doi.org/10.1109/9.880640

J. Klamka, Stochastic controllability of linear systems with delay in control, Bulletin of the Polish Academy of Sciences: Technical Sciences, 55(2007), 23-29.

N.I. Mahmudov, S. Zorlu, Controllability of non-linear stochastic systems, Internat. J. Control, 76(2003), 95-104. DOI: https://doi.org/10.1080/0020717031000065648

Y. Ren, L. Hu, R. Sakthivel, Controllability of impulsive neutral stochastic functional differential inclusions with infinite delay, Journal of Computational and Applied Mathematics, 235(2011), 2603-2614. DOI: https://doi.org/10.1016/j.cam.2010.10.051

R. Sakthivel, E.R. Anandhi, Approximate controllability of impulsive differential equations with state-dependent delay, International Journal of Control, 83(2010), 387-393. DOI: https://doi.org/10.1080/00207170903171348

R. Sakthivel, Y. Ren, N.I. Mahmudov, Approximate controllability of second order stochastic differential equations with impulsive effects, Modern Physics Letters B , 24(2010), 1-14. DOI: https://doi.org/10.1142/S0217984910023359

R. Sakthivel, S. Suganya, S.M. Anthoni, Approximate controllability of fractional stochastic evolution equations, Computers & Mathematics with Applications, 63(2012), 660-668. DOI: https://doi.org/10.1016/j.camwa.2011.11.024

R. Sakthivel, Y. Ren, N.I. Mahmudov, On the approximate controllability of semilinear fractional differential systems, Computers and Mathematics with Applications, 62(2011), 1451-1459. DOI: https://doi.org/10.1016/j.camwa.2011.04.040

R. Sakthivel, N.I. Mahmudov, J.J. Nieto, Controllability for a class of fractional-order neutral evolution control systems, Applied Mathematics and Computation, 218(2012), 10334-10340. DOI: https://doi.org/10.1016/j.amc.2012.03.093

R. Sakthivel, R. Ganesh, S. Suganya, Approximate controllability of fractional neutral stochastic system with infinite delay, Reports on Mathematical Physics, 70(2012), 291-311. DOI: https://doi.org/10.1016/S0034-4877(12)60047-0

R. Sakthivel, Y. Ren, Complete controllability of stochastic evolution equations with jumps, Reports on Mathematical Physics, 68(2011), 163-174. DOI: https://doi.org/10.1016/S0034-4877(12)60003-2

A.B. Shamardan, M.R.A. Moubarak, Controllability and observability for fractional control systems, J. Fract. Cal., 15(1999), 2534.

L. Shen, J. Sun, Relative controllability of stochastic nonlinear systems with delay in control, Non-linear Analysis: RWA, 13(2012), 2880-2887. DOI: https://doi.org/10.1016/j.nonrwa.2012.04.017

  • NA

Metrics

Metrics Loading ...

Published

01-01-2013

How to Cite

Toufik Guendouzi, and Iqbal Hamada. “Relative Controllability of Fractional Stochastic Dynamical Systems With Multiple Delays in Control”. Malaya Journal of Matematik, vol. 1, no. 01, Jan. 2013, pp. 86-97, doi:10.26637/mjm101/009.