Oscillation criteria for third order neutral difference equations with distributed delay
Downloads
DOI:
https://doi.org/10.26637/mjm102/001Abstract
In this paper we study the oscillatory behavior of third order neutral difference equation of the form
$$
\Delta\left(r(n) \Delta^2 z(n)\right)+\sum_{s=c}^d q(n, s) f(x(n+s-\sigma))=0, n \geq n_0 \geq 0,
$$
where \(z(n)=x(n)+\sum_{s=a}^b p(n, s) x(n+s-\tau)\). We establish some sufficient conditions which ensure that every solution of the equation oscillates or converges to zero by using a generalized Ricaati transformation and Philos - type technique. An example is given to illustrate the main result.
Keywords:
oscillation, neutral difference equations, Philos - typeMathematics Subject Classification:
39A10- Pages: 1-10
- Date Published: 01-04-2013
- Vol. 1 No. 02 (2013): Malaya Journal of Matematik (MJM)
R.P.Agarwal, M.Bohner, S.R.Grace and D.O’Regan, Discrete Oscillation Theory, Hindawi Publ. Corp., New York, 2005. DOI: https://doi.org/10.1155/9789775945198
R.P.Agarwal and S.R.Grace, Oscillation of certain third order difference equations, Comput. Math. Appl., 42(2001), 379-384. DOI: https://doi.org/10.1016/S0898-1221(01)00162-6
R.P.Agarwal, S.R.Grace and D.O’Regan, On the oscillation of certain third order difference equations, Adv. Diff. Eqns., 3(2005), 345-367. DOI: https://doi.org/10.1155/ADE.2005.345
J.R.Graef and E.Thandapani, Oscillatory and asymptotic behavior of solutions of third order delay difference equations, Funk. Ekva., 42(1999), 355-369.
S.R.Grace, R.P.Agarwal and J.R.Graef, Oscillation criteria for certain third order nonlinear difference equations, Appl. Anal. Discrete Math., 3(2009), 27-38. DOI: https://doi.org/10.2298/AADM0901027G
H.J.Li and C.C.Yeh, Oscillation criteria for second order neutral delay difference equations, Comput.Math. Applic., 36(10-12)(1998), 123-132. DOI: https://doi.org/10.1016/S0898-1221(98)80015-1
S.H.Saker, Oscillation and asymptotic behavior of third order nonlinear neutral delay difference equations, Dyn. Sys. Appl., 15(2006), 549-568.
S.H.Saker , J.O.Alzabut and A.Mukheime, On the oscillatory behavior for a certain third order nonlinear delay difference equations, Elec.J.Qual. Theo. Diff. Eqns., 67(2010), 1-16. DOI: https://doi.org/10.14232/ejqtde.2010.1.67
B.Smith and Jr.W.E.Taylor, Asymptotic behavior of solutions of third order difference equations, Port. Math., 44(1987), 113-117.
B.Smith and Jr.W.E.Taylor, Nonlinear third order difference equation: oscillatory and asymptotic behavior, Tamkang J.Math., 19(1988), 91-95.
E.Thandapani and K.Mahalingam, Osciilatory properties of third order neutral delay difference equations, Demons. Math., 35(2)(2002), 325-336. DOI: https://doi.org/10.1515/dema-2002-0213
E.Thandapani and S.Selvarangam, Oscillation results for third order halflinear neutral difference equations, Bull. Math. Anal. Appl., 4(2012), 91-102.
E.Thandapani and S.Selvarangam, Oscillation of third order halflinear neutral difference equations, Math. Bohemica (to appear).
E.Thandapani and M.Vijaya, On the osciilation of third order halflinear neutral type difference equations, Elec.J.Qual. Theo. Diff. Eqns., 76(2011), 1-13. DOI: https://doi.org/10.14232/ejqtde.2011.1.76
- NA
Similar Articles
- Toufik Guendouzi, Iqbal Hamada, Relative controllability of fractional stochastic dynamical systems with multiple delays in control , Malaya Journal of Matematik: Vol. 1 No. 01 (2013): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2013 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.