A new classes of open mappings
Downloads
DOI:
https://doi.org/10.26637/mjm102/003Abstract
The aim of this paper is to introduce new classes of mappings namely \(\hat{\Omega}\)-open mappings, somewhat \(\hat{\Omega}\) open functions and hardly \(\hat{\Omega}\)-open mappings by utilizing \(\hat{\Omega}\)-closed sets. Also investigate some of their properties.
Keywords:
\(\hat{\Omega}\)-closed sets, \(\hat{\Omega}\) dense set, \(\hat{\Omega}\)-open mappingsMathematics Subject Classification:
57C05- Pages: 18-28
- Date Published: 01-04-2013
- Vol. 1 No. 02 (2013): Malaya Journal of Matematik (MJM)
S. P. Arya and R. Gupta, On Strongly Continuous Mappings, Kyungpook Math. J., 14(1974), 131-143.
S. Balasubramanian, et al, Slightly Continuous;Somewhat sg-continuous and Somewhat sg-open Functions, Int. Journal of Mathematical Archive, 3(6)(2012), 2194-2203.
S. S. Benchalli and Priyanka M. Bansali, Somewhat b-continuous and Somewhat b-open Functions in Topological Spaces, Int. Journal of Math. Analysis, 4(46)(2010), 2287-2296.
J. Dontchev and M. Ganster, On δ-generalized closed sets and T 3 4 -spaces, Mem. Fac. Sci. Kochi Univ.(Math.), 17(1996), 15-31.
E. Ekici, On δ-semiopen sets and a generalizations of functions, Bol. Soc. Paran. Mat., 23(1-2)(2005), 73-84. DOI: https://doi.org/10.5269/bspm.v23i1-2.7462
Karl R. Gentry and Hughes B. Hoyle,III., Somewhat continuous Functions, Czechoslovar Mathematical Journal, 21(1)(1971), 5-12. DOI: https://doi.org/10.21136/CMJ.1971.100999
Lellis M. Thivagar and M. Anbuchelvi, Note on Ω-closed sets in topological spaces, Mathematical Theory and Modelling, 2(9)(2012), 50-58. DOI: https://doi.org/10.9790/5728-0240915
Lellis M. Thivagar and M. Anbuchelvi, New spaces and Continuity via Ω-closed sets, (Submitted).
B. M. Munshi and D. S. Bassan, Super continuous function, Indian J.Pure. Appl. Math., 13(1982), 229-36.
T. Noiri, Super-continuity and some strong forms of continuity , Indian J. Pure. Appl. Math., 15(1984), 241-150.
A. L. Yougslova, Weakly Equivalent Topologies, Master’s Thesis, University of Georgia, Georgia, 1965.
- NA
Similar Articles
- R. Arul, G. Ayyappan , Oscillation criteria for third order neutral difference equations with distributed delay , Malaya Journal of Matematik: Vol. 1 No. 02 (2013): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2013 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.