Radio number for strong product \(P_2 \otimes P_n\)
Downloads
DOI:
https://doi.org/10.26637/mjm102/004Abstract
A radio labeling of a graph \(G\) is a function \(f\) from the vertex set \(V(G)\) to the set of non-negative integers such that \(|f(u)-f(v)| \geq \operatorname{diam}(G)+1-d_G(u, v)\), where \(\operatorname{diam}(G)\) and \(d_G(u, v)\) are diameter and distance between \(u\) and \(v\) in graph \(G\) respectively. The radio number \(\operatorname{rn}(G)\) of \(G\) is the smallest number \(k\) such that \(G\) has radio labeling with \(\max \{f(v): v \in V(G)\}=k\). We investigate radio number for strong product of \(P_2\) and \(P_n\).
Keywords:
Interference, channel assignment, radio labeling, radio number, strong productMathematics Subject Classification:
05C15, 05C78- Pages: 29-36
- Date Published: 01-04-2013
- Vol. 1 No. 02 (2013): Malaya Journal of Matematik (MJM)
G. J. Chang and D. Kuo, The L(2,1)-labeling problem on graphs, SIAM J. Discrete Math., 9(2)(1996), 309-316. DOI: https://doi.org/10.1137/S0895480193245339
G. Chartrand, D. Erwin, F. Harary and P. Zhang, Radio labeling of graphs, Bull. Inst. Combin. Appl.,33(2001), 77-85.
J. P. Georges and D. W. Mauro, Labeling trees with a condition at distsnce two, Discrete Math., 269(2003), 127-148. DOI: https://doi.org/10.1016/S0012-365X(02)00750-1
J. R. Griggs and R. K. Yeh, Labeling graphs with condition at distance 2, SIAM J. Discrete Math.,5(4)(1992), 586-595. DOI: https://doi.org/10.1137/0405048
W. K. Hale, Frequency assignment: Theory and applications, Proc. IEEE, 68(12)(1980), 1497-1514. DOI: https://doi.org/10.1109/PROC.1980.11899
D. Liu, Radio number for trees, Discrete Mathematics, 308(2008), 1153-1164. DOI: https://doi.org/10.1016/j.disc.2007.03.066
D. Liu, M. Xie, Radio number of square cycles, Congr.Numer., 169(2004), 105-125.
D. Liu, M. Xie, Radio number of square paths, Ars Combin., 90(2009), 307-319.
D. Liu and X. Zhu, Multilevel distance labelings for paths and cycles, SIAM J. Discrete Math., 19(3)(2005), 610-621. DOI: https://doi.org/10.1137/S0895480102417768
F. S. Roberts, T-coloring of graphs: recent results and open problems, Discrete Math., 93(1991), 229-245. DOI: https://doi.org/10.1016/0012-365X(91)90258-4
D. Sakai, Labeling Chordal Graphs: Distance Two Condition, SIAM J. Discrete Math., 7(1)(1994), 133-140. DOI: https://doi.org/10.1137/S0895480191223178
S. K. Vaidya and D. D. Bantva, Labeling cacti with a condition at distance two, Le Matematiche, 66(2011), 29-36.
S. K. Vaidya, P. L. Vihol, N. A. Dani and D. D. Bantva, L(2,1)-labeling in the context of some graph operations, Journal of Mathematics Research, 2(3)(2010), 109-119. DOI: https://doi.org/10.5539/jmr.v2n3p109
S. K. Vaidya and P. L. Vihol, Radio labeling for some cycle related graphs, International Journal of Mathematics and Soft Computing, 2(2)(2012), 11-24. DOI: https://doi.org/10.26708/IJMSC.2012.2.2.03
W. Wang, The L(2,1)-labeling of trees, Discrete Applied Math., 154(2006), 598-603. DOI: https://doi.org/10.1016/j.dam.2005.09.007
D. B. West, Introduction to Graph Theory, Prentice -Hall of India, 2001.
R. K. Yeh, A survey on labeling graphs with a condition at distance two, Discrete Math., 306(2006), 1217-1231. DOI: https://doi.org/10.1016/j.disc.2005.11.029
R. K. Yeh, Labeling Graphs with a Condition at Distance Two, Ph.D.Thesis, Dept.of Math., University of South Carolina, Columbia, SC, 1990.
- NA
Similar Articles
- Sunil K. Sharma, Kuldip Raj, Difference entire sequence spaces of fuzzy numbers , Malaya Journal of Matematik: Vol. 1 No. 02 (2013): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2013 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.