Radio number for strong product \(P_2 \otimes P_n\)

Downloads

DOI:

https://doi.org/10.26637/mjm102/004

Abstract

A radio labeling of a graph \(G\) is a function \(f\) from the vertex set \(V(G)\) to the set of non-negative integers such that \(|f(u)-f(v)| \geq \operatorname{diam}(G)+1-d_G(u, v)\), where \(\operatorname{diam}(G)\) and \(d_G(u, v)\) are diameter and distance between \(u\) and \(v\) in graph \(G\) respectively. The radio number \(\operatorname{rn}(G)\) of \(G\) is the smallest number \(k\) such that \(G\) has radio labeling with \(\max \{f(v): v \in V(G)\}=k\). We investigate radio number for strong product of \(P_2\) and \(P_n\).

Keywords:

Interference, channel assignment, radio labeling, radio number, strong product

Mathematics Subject Classification:

05C15, 05C78
  • S. K. Vaidya Department of Mathematics, Saurashtra University, Rajkot-360 005, Gujarat, India.
  • D. D. Bantva Department of Mathematics, L. E. College, Morvi-363 642, Gujarat, India.
  • Pages: 29-36
  • Date Published: 01-04-2013
  • Vol. 1 No. 02 (2013): Malaya Journal of Matematik (MJM)

G. J. Chang and D. Kuo, The L(2,1)-labeling problem on graphs, SIAM J. Discrete Math., 9(2)(1996), 309-316. DOI: https://doi.org/10.1137/S0895480193245339

G. Chartrand, D. Erwin, F. Harary and P. Zhang, Radio labeling of graphs, Bull. Inst. Combin. Appl.,33(2001), 77-85.

J. P. Georges and D. W. Mauro, Labeling trees with a condition at distsnce two, Discrete Math., 269(2003), 127-148. DOI: https://doi.org/10.1016/S0012-365X(02)00750-1

J. R. Griggs and R. K. Yeh, Labeling graphs with condition at distance 2, SIAM J. Discrete Math.,5(4)(1992), 586-595. DOI: https://doi.org/10.1137/0405048

W. K. Hale, Frequency assignment: Theory and applications, Proc. IEEE, 68(12)(1980), 1497-1514. DOI: https://doi.org/10.1109/PROC.1980.11899

D. Liu, Radio number for trees, Discrete Mathematics, 308(2008), 1153-1164. DOI: https://doi.org/10.1016/j.disc.2007.03.066

D. Liu, M. Xie, Radio number of square cycles, Congr.Numer., 169(2004), 105-125.

D. Liu, M. Xie, Radio number of square paths, Ars Combin., 90(2009), 307-319.

D. Liu and X. Zhu, Multilevel distance labelings for paths and cycles, SIAM J. Discrete Math., 19(3)(2005), 610-621. DOI: https://doi.org/10.1137/S0895480102417768

F. S. Roberts, T-coloring of graphs: recent results and open problems, Discrete Math., 93(1991), 229-245. DOI: https://doi.org/10.1016/0012-365X(91)90258-4

D. Sakai, Labeling Chordal Graphs: Distance Two Condition, SIAM J. Discrete Math., 7(1)(1994), 133-140. DOI: https://doi.org/10.1137/S0895480191223178

S. K. Vaidya and D. D. Bantva, Labeling cacti with a condition at distance two, Le Matematiche, 66(2011), 29-36.

S. K. Vaidya, P. L. Vihol, N. A. Dani and D. D. Bantva, L(2,1)-labeling in the context of some graph operations, Journal of Mathematics Research, 2(3)(2010), 109-119. DOI: https://doi.org/10.5539/jmr.v2n3p109

S. K. Vaidya and P. L. Vihol, Radio labeling for some cycle related graphs, International Journal of Mathematics and Soft Computing, 2(2)(2012), 11-24. DOI: https://doi.org/10.26708/IJMSC.2012.2.2.03

W. Wang, The L(2,1)-labeling of trees, Discrete Applied Math., 154(2006), 598-603. DOI: https://doi.org/10.1016/j.dam.2005.09.007

D. B. West, Introduction to Graph Theory, Prentice -Hall of India, 2001.

R. K. Yeh, A survey on labeling graphs with a condition at distance two, Discrete Math., 306(2006), 1217-1231. DOI: https://doi.org/10.1016/j.disc.2005.11.029

R. K. Yeh, Labeling Graphs with a Condition at Distance Two, Ph.D.Thesis, Dept.of Math., University of South Carolina, Columbia, SC, 1990.

  • NA

Metrics

Metrics Loading ...

Published

01-04-2013

How to Cite

S. K. Vaidya, and D. D. Bantva. “Radio Number for Strong Product \(P_2 \otimes P_n\)”. Malaya Journal of Matematik, vol. 1, no. 02, Apr. 2013, pp. 29-36, doi:10.26637/mjm102/004.