Nonlocal impulsive fractional semilinear differential equations with almost sectorial operators
Downloads
DOI:
https://doi.org/10.26637/mjm102/006Abstract
This paper is concerned with the existence and uniqueness of mild solutions for a class of impulsive fractional semilinear differential equations with nonlocal condition in a Banach space by using the concepts of almost sectorial operators. The results are established by the application of the Banach fixed point theorem and Krasnoselskii’s fixed point theorem.
Keywords:
Fractional differential equations, impulses, nonlocal condition, almost sectorial operator, mild solutionMathematics Subject Classification:
34A37, 34K37, 47A60- Pages: 43-53
- Date Published: 01-04-2013
- Vol. 1 No. 02 (2013): Malaya Journal of Matematik (MJM)
G. Da Prato and E. Sinestrari, Differential operators with non-dense domain, Ann. Scuola Norm. Sup. Pisa cl. sci., (4:2)14(1987), 85-344.
A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhauser Verlag, Basel 1995. DOI: https://doi.org/10.1007/978-3-0348-0557-5
W. Von Wahl, Gebrochene potenzen eines elliptischen operators und parabolische Differential gleichungen in R¨aumen h¨olderstetiger Funktionen, Nachr. Akad. Wiss. G¨ottingen, Math.-Phys. Klasse, 11(1972), 231-258.
F. Periago and B. Straub, A functional calculus for almost sectorial operators and applications to abstract evolution equations, J. Evol. Equ., 2(1)(2002), 41-68. DOI: https://doi.org/10.1007/s00028-002-8079-9
T. Dlotko, Semilinear Cauchy problems with almost sectorial operaors, Bull. Pol. Acad. Sci. Math., 55(4)(2007), 333-346. DOI: https://doi.org/10.4064/ba55-4-5
N. Okazawa, A generation theorem for semigroups of growth order α, Tohoku Math. L., 26(1974), 39-51. DOI: https://doi.org/10.2748/tmj/1178241232
F. Periago, Global existence, uniqueness and continuous dependence for a semilinear initial value problem, J. Math. Anal. Appl., 280(2)(2003), 413-423. DOI: https://doi.org/10.1016/S0022-247X(03)00126-4
E.M. Hernandez, On a class of abstract functional differential equations involving almost sectorial operators, Differential Equations and Applications, Volume 3, Number 1 (2011), 1-10. DOI: https://doi.org/10.7153/dea-03-01
A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations; in: North - Holland Mathematics Studies, Volume 204, Elsevier, Amsterdam 2006.
V. Lakshmikantham, A.S. Vatsala, Basic theory of fractional differential equations, Nonlinear Analysis: Theory, Methods and Applications, 69(2008), 2677-2682. DOI: https://doi.org/10.1016/j.na.2007.08.042
K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York 1993.
I. Podlubny, Fractional Differential Equations, Academic Press, Newyork 1993.
R.P. Agarwal, M. Belmekki, M. Benchohra, Existence results for semilinear functional differential inclusions involving Riemann - Liouville fractional derivative, Dynamics of Continuous, Discrete and Impulsive Systems, Series A: Mathematical Analysis, 17(2010), 347-361.
K. Diethelm, Analysis of fractional differential equations, Journal of Mathematical Analysis and Applications, 265(2002), 229-248. DOI: https://doi.org/10.1006/jmaa.2000.7194
G. Mophou, G.M. N’Guerekata, Existence of the mild solution for some fractional differential equations with nonlocal conditions, Semigroup Forum, 79(2009), 315-322. DOI: https://doi.org/10.1007/s00233-008-9117-x
F. Mainardi, R. Gorenflo, On Mittag-Leffler type functions in fracional evolution processes, J. Comput. Appl. Math., 118(2000), 283-299. DOI: https://doi.org/10.1016/S0377-0427(00)00294-6
D.D. Bainov, P.S. Simeonov, Systems with Impulsive Effect, Horwood, Chichester, 1989.
M. Benchohra, A. Quahab, Impulsive neutral functional differential equations with variable times, Nonlinear Analysis, 55(2003), 679-693. DOI: https://doi.org/10.1016/j.na.2003.08.011
V. Lakshmikantham, D.D. Bainov, P.S. Simeonov, Theory of Impulsive Differential Equations, Singapore: World Scientific: 1989. DOI: https://doi.org/10.1142/0906
A.M. Samoilenko, N.A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore 1995. DOI: https://doi.org/10.1142/2892
A. Anguraj and K. Karthikeyan, Existence of solutions for impulsive neutral functional differential equations with nonlocal conditions, Nonlinear Analysis, 70(2009), 2717-2721. DOI: https://doi.org/10.1016/j.na.2008.03.059
A. Anguraj, M. Mallika Arjunan, E.M. Hernandez, Existence results for an impulsive neutral functional differential equation with state-dependent delay, Appl. Anal., 86(2007), 861-872. DOI: https://doi.org/10.1080/00036810701354995
G. Mophou, Existence and uniqueness of mild solutions to impulsive fractional differential equations, Nonlinear Analysis: Theory, Methods and Applications, 72(2010), 1604-1615. DOI: https://doi.org/10.1016/j.na.2009.08.046
R.P. Agarwal, M. Benchohra, B.A. Slimani, Existence results for differential equations with fractional order and impulses, Mem. Differential Equations Math. Phys., 44(2008), 1-21. DOI: https://doi.org/10.1134/S0012266108010011
B. Ahmed, S. Sivasundaram, Existence of solutions for impulsive integral boundary value problems of fractional order, Nonlinear Analysis: Hybrid Systems, 4(2010), 134-141. DOI: https://doi.org/10.1016/j.nahs.2009.09.002
K. Deng, Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions, J. Math. Anal. Appl., 179(1993), 630-637. DOI: https://doi.org/10.1006/jmaa.1993.1373
M. Benchohra, S. Ntouyas, Existence and controllability results for multivalued semilinear differential equations with nonlocal conditions, Soochow J.Math., 29(2003), 157-170.
L. Byszewski, Existence of solutions of semilinear functional-differential evolution nonlocal problem, Nonlinear Analysis, 34(1998), 65-72. DOI: https://doi.org/10.1016/S0362-546X(97)00693-7
L. Byszewski, V. Lakshmikantham, Theorem about existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a Banach space, Appl. Anal., 40(1990), 11-19. DOI: https://doi.org/10.1080/00036819008839989
Robert Knapik, Impulsive differential equations with non-local conditions, Morehead Electronic Journal of Applicable Mathematics, Issue 3-Math-2002-03, 1-6.
Rong-Nian Wang, De-Han Chen, Ti-jun Xiaon, Abstract fractional Cauchy problems with almost sectorial operators, Journal of Differential Equations, 252(2012), 202-235. DOI: https://doi.org/10.1016/j.jde.2011.08.048
A.N. Carvalho, T. Dlotko, M.J.D. Nescimento, Non-autonomous semilinear evolution equations with almost sectorial operators, J. Evol. Equ., 8(2008), 631-659. DOI: https://doi.org/10.1007/s00028-008-0394-3
- NA
Similar Articles
- S. K. Vaidya, D. D. Bantva, Radio number for strong product \(P_2 \otimes P_n\) , Malaya Journal of Matematik: Vol. 1 No. 02 (2013): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2013 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.