Application of random fixed point theorems in solving nonlinear stochastic integral equation of the Hammerstein type

Downloads

DOI:

https://doi.org/10.26637/mjm102/007

Abstract

In the present paper, we apply random analogue Kannan fixed point theorem [10] to analyze the existence of a solution of a nonlinear stochastic integral equation of the Hammerstein type of the form
$$
x(t ; \omega)=h(t ; \omega)+\int_S k(t, s ; \omega) f(s, x(s ; \omega)) d \mu(s)
$$
where \(t \in S\), a \(\sigma\)-finite measure space with certain properties, \(\omega \in \Omega\), the supporting set of a probability measure space \((\Omega, \beta, \mu)\) and the integral is a Bochner integral.

Keywords:

Random fixed point, Kannan operator, stochastic integral equation

Mathematics Subject Classification:

47H10, 60H25
  • Debashis Dey Koshigram Union Institution, Koshigram-713150, Burdwan , West Bengal, India.
  • Mantu Saha Department of Mathematics, The University of Burdwan, Burdwan-713104, West Bengal, India.
  • Pages: 54-59
  • Date Published: 01-04-2013
  • Vol. 1 No. 02 (2013): Malaya Journal of Matematik (MJM)

J. Achari, On a pair of random generalized non-linear contractions, Int. J. Math. Math. Sci., 6(3), (1983), 467-475. DOI: https://doi.org/10.1155/S0161171283000411

R.F. Arens, A topology for spaces of transformations, Annals of Math., 47(2), (1946), 480-495. DOI: https://doi.org/10.2307/1969087

S. Banach, Sur les oprations dans les ensembles abstraits et leur application aux quations intgrales, Fund. Math. 3, (1922), 133-181 (French). DOI: https://doi.org/10.4064/fm-3-1-133-181

A.T. Bharucha-Reid, Fixed point theorems in probabilistic analysis, Bull. Amer. Math. Soc., 82(5), (1976), 641-657. DOI: https://doi.org/10.1090/S0002-9904-1976-14091-8

S.K. Chatterjea, Fixed point theorems, C. R. Acad. Bulgare Sci., 25, (1972), 727-730.

O. Hanˇ s, Reduzierende zufällige transformationen, Czechoslovak Math. Journal, 7(82), (1957), 154-158, (German), with Russian summary. DOI: https://doi.org/10.21136/CMJ.1957.100238

O. Hanˇ s, Random operator equations, Proceedings of 4th Berkeley Sympos. Math. Statist. and Prob., University of California Press, California, Vol.II, part I, (1961), 185-202.

S. Itoh, Random fixed-point theorems with an application to random differential equations in Banach spaces, J. Math. Anal. Appl., 67(2), (1979), 261-273. DOI: https://doi.org/10.1016/0022-247X(79)90023-4

M.C. Joshi and R.K. Bose, Some topics in non linear functional analysis, Wiley Eastern Ltd., (1984).

R. Kannan, Some results on fixed points, Bull. Cal. Math. Soc. , 60, (1968), 71-76. DOI: https://doi.org/10.2307/2316437

A.C.H. Lee and W.J. Padgett, On random nonlinear contraction, Math. Systems Theory, ii, (1977), 77-84. DOI: https://doi.org/10.1007/BF01768469

W.J. Padgett, On a nonlinear stochastic integral equation of the Hammerstein type, Proc. Amer. Math. Soc., 38 (1), (1973). DOI: https://doi.org/10.1090/S0002-9939-1973-0320663-2

E. Rothe, Zu¨ r Theorie der topologische ordnung und der vektorfelder in Banachschen Raumen, Composito Math., 5, (1937), 177-197.

M. Saha , On some random fixed point of mappings over a Banach space with a probability measure, Proc. Nat. Acad. Sci., India, 76(A)III, (2006), 219-224.

M. Saha and L. Debnath, Random fixed point of mappings over a Hilbert space with a probability measure, Adv. Stud. Contemp. Math., 18(1), (2009), 97-104.

M. Saha and D. Dey, Some Random fixed point theorems for (θ,L)-weak contractions, Hacettepe Journal of Mathematics and Statistics, 41(6), (2012), 795-812.

V.M. Sehgal and C. Waters, Some random fixed point theorems for condensing operators, Proc. Amer. Math. Soc., 90 (1), (1984), 425-429. DOI: https://doi.org/10.1090/S0002-9939-1984-0728362-7

A. Spaˇ cek, Zufällige Gleichungen, Czechoslovak Mathematical Journal, 5(80), (1955), 462-466, (German), with Russian summary.

K. Yosida, Functional analysis, Academic press, New york, Springer-Verlag, Berlin, (1965). DOI: https://doi.org/10.1007/978-3-642-52814-9

T. Zamfirescu, Fixed point theorems in metric spaces, Arch. Math.(Basel), 23, (1972), 292-298. DOI: https://doi.org/10.1007/BF01304884

  • NA

Metrics

Metrics Loading ...

Published

01-04-2013

How to Cite

Debashis Dey, and Mantu Saha. “Application of Random Fixed Point Theorems in Solving Nonlinear Stochastic Integral Equation of the Hammerstein Type”. Malaya Journal of Matematik, vol. 1, no. 02, Apr. 2013, pp. 54-59, doi:10.26637/mjm102/007.