On a class of fractional \(q\)-Integral inequalities

Downloads

DOI:

https://doi.org/10.26637/mjm103/001

Abstract

In the present paper, we use the fractional \(q\)-calculus to generate some new integral inequalities for some monotonic functions. Other fractional \(q\)-integral results, using convex functions, are also presented.

Keywords:

Convex function, fractional \(q\)-calculus , \(q\)-Integral inequalitie

Mathematics Subject Classification:

26D15
  • Pages: 1-6
  • Date Published: 01-07-2013
  • Vol. 1 No. 03 (2013): Malaya Journal of Matematik (MJM)

R. P. Agarwal, Certain fractional q-integrals and q-derivatives, Proceedings of the Cambridge Philosophical Society, 66(1969), 365-370. DOI: https://doi.org/10.1017/S0305004100045060

F.M. Atici and P. W. Eloe, Fractional q-calculus on a time scale, Journal of Nonlinear Mathematical Physics, 14(3)(2007), 341-352. DOI: https://doi.org/10.2991/jnmp.2007.14.3.4

M. Bohner and A. Peterson, Dynamic Equations on Time Scales, Birkhauser, Boston, Mass, USA, 2001. DOI: https://doi.org/10.1007/978-1-4612-0201-1

L. Bougoufa, An integral inequality similar to Qi’s inequality, JIPAM. J. Inequal. Pure Appl. Math.,6(1)2005, 1-3.

Z. Dahmani, A note on some fractional inequalities involving convex functions, Acta Math. Univ.Comenianae, Vol. LXXXI, 2, 2012, 241-246.

Z. Dahmani, N. Bedjaoui, Some generalized integral inequalities, Journal of Advanced Research in Applied Mathematics 3(4)(2011), 58-66. DOI: https://doi.org/10.5373/jaram.708.010611

Z. Dahmani, H. Metakkel El Ard, Generalizations of some integral inequalities using Riemann-Liouville operator, IJOPCM, International Journal of Open Problems in Computer Science and Mathematics, 4(4)(2011), 1-10.

Rui A. C. Ferreira, Nontrivial solutions for fractional q-difference boundary value problems, Electronic Journal of Qualitative Theory of Differential Equations, 70(2010), 1-10. DOI: https://doi.org/10.14232/ejqtde.2010.1.70

Rui A. C. Ferreira, Positive solutions for a class of boundary value problems with fractional q-differences, Comput. Math. Appl., 61(2)(2011), 367-373. DOI: https://doi.org/10.1016/j.camwa.2010.11.012

W.J. Liu, C.C. Li and J.W. Dong, On an open problem concerning an integral inequality, JIPAM. J.Inequal. Pure Appl. Math., 8(3)(2007), 1-5.

W.J. Liu, G.S. Cheng and C.C. Li, Further development of an open problem concerning an integral inequality, JIPAM. J. Inequal. Pure Appl. Math., 9(1)(2008), 1-10.

W.J. Liu, Q.A. Ngo and V.N. Huy, Several interesting integral inequalities, Journal of Math. Inequal.,3(2)(2009), 201-212. DOI: https://doi.org/10.7153/jmi-03-20

Q.A. Ngo, D.D. Thang, T.T. Dat, and D.A. Tuan, Notes on an integral inequality, JIPAM. J. Inequal. Pure Appl. Math., 7(4)(2006), 1-6.

H. Ogunmez and U.M. Ozkan, Fractional Quantum Integral Inequalities, J. Inequal. Appl., 2011, Art. ID 787939, 7 pp. DOI: https://doi.org/10.1155/2011/787939

T.K. Pogany, On an open problem of F. Qi, JIPAM. J. Inequal. Pure Appl. Math., 3(4)(2002), 1-12.

F. Qi, Several integral inequalities, JIPAM. J. Inequal. Pure Appl. Math., 1(2)(2000), 1-7.

  • NA

Metrics

Metrics Loading ...

Published

01-07-2013

How to Cite

Z. Dahmani, and A. Benzidane. “On a Class of Fractional \(q\)-Integral Inequalities”. Malaya Journal of Matematik, vol. 1, no. 03, July 2013, pp. 1-6, doi:10.26637/mjm103/001.