On a class of fractional q-Integral inequalities

Downloads

DOI:

https://doi.org/10.26637/mjm103/001

Abstract

In the present paper, we use the fractional q-calculus to generate some new integral inequalities for some monotonic functions. Other fractional q-integral results, using convex functions, are also presented.

Keywords:

Convex function, fractional q-calculus , q-Integral inequalitie

Mathematics Subject Classification:

26D15
  • Pages: 1-6
  • Date Published: 01-07-2013
  • Vol. 1 No. 03 (2013): Malaya Journal of Matematik (MJM)

R. P. Agarwal, Certain fractional q-integrals and q-derivatives, Proceedings of the Cambridge Philosophical Society, 66(1969), 365-370. DOI: https://doi.org/10.1017/S0305004100045060

F.M. Atici and P. W. Eloe, Fractional q-calculus on a time scale, Journal of Nonlinear Mathematical Physics, 14(3)(2007), 341-352. DOI: https://doi.org/10.2991/jnmp.2007.14.3.4

M. Bohner and A. Peterson, Dynamic Equations on Time Scales, Birkhauser, Boston, Mass, USA, 2001. DOI: https://doi.org/10.1007/978-1-4612-0201-1

L. Bougoufa, An integral inequality similar to Qi’s inequality, JIPAM. J. Inequal. Pure Appl. Math.,6(1)2005, 1-3.

Z. Dahmani, A note on some fractional inequalities involving convex functions, Acta Math. Univ.Comenianae, Vol. LXXXI, 2, 2012, 241-246.

Z. Dahmani, N. Bedjaoui, Some generalized integral inequalities, Journal of Advanced Research in Applied Mathematics 3(4)(2011), 58-66. DOI: https://doi.org/10.5373/jaram.708.010611

Z. Dahmani, H. Metakkel El Ard, Generalizations of some integral inequalities using Riemann-Liouville operator, IJOPCM, International Journal of Open Problems in Computer Science and Mathematics, 4(4)(2011), 1-10.

Rui A. C. Ferreira, Nontrivial solutions for fractional q-difference boundary value problems, Electronic Journal of Qualitative Theory of Differential Equations, 70(2010), 1-10. DOI: https://doi.org/10.14232/ejqtde.2010.1.70

Rui A. C. Ferreira, Positive solutions for a class of boundary value problems with fractional q-differences, Comput. Math. Appl., 61(2)(2011), 367-373. DOI: https://doi.org/10.1016/j.camwa.2010.11.012

W.J. Liu, C.C. Li and J.W. Dong, On an open problem concerning an integral inequality, JIPAM. J.Inequal. Pure Appl. Math., 8(3)(2007), 1-5.

W.J. Liu, G.S. Cheng and C.C. Li, Further development of an open problem concerning an integral inequality, JIPAM. J. Inequal. Pure Appl. Math., 9(1)(2008), 1-10.

W.J. Liu, Q.A. Ngo and V.N. Huy, Several interesting integral inequalities, Journal of Math. Inequal.,3(2)(2009), 201-212. DOI: https://doi.org/10.7153/jmi-03-20

Q.A. Ngo, D.D. Thang, T.T. Dat, and D.A. Tuan, Notes on an integral inequality, JIPAM. J. Inequal. Pure Appl. Math., 7(4)(2006), 1-6.

H. Ogunmez and U.M. Ozkan, Fractional Quantum Integral Inequalities, J. Inequal. Appl., 2011, Art. ID 787939, 7 pp. DOI: https://doi.org/10.1155/2011/787939

T.K. Pogany, On an open problem of F. Qi, JIPAM. J. Inequal. Pure Appl. Math., 3(4)(2002), 1-12.

F. Qi, Several integral inequalities, JIPAM. J. Inequal. Pure Appl. Math., 1(2)(2000), 1-7.

  • NA

Metrics

PDF views
81
Jul 2013Jan 2014Jul 2014Jan 2015Jul 2015Jan 2016Jul 2016Jan 2017Jul 2017Jan 2018Jul 2018Jan 2019Jul 2019Jan 2020Jul 2020Jan 2021Jul 2021Jan 2022Jul 2022Jan 2023Jul 2023Jan 2024Jul 2024Jan 2025Jul 2025Jan 202611
|

Published

01-07-2013

How to Cite

Z. Dahmani, and A. Benzidane. “On a Class of Fractional q-Integral Inequalities”. Malaya Journal of Matematik, vol. 1, no. 03, July 2013, pp. 1-6, doi:10.26637/mjm103/001.