Solutions of fractional difference equations using S-transforms

Downloads

DOI:

https://doi.org/10.26637/mjm103/002

Abstract

In the present paper, we define the nabla discrete Sumudu transform (S-transform) and present some of its basic properties. We obtain the nabla discrete Sumudu transform of fractional sums and differences. We apply this transform to solve some fractional difference equations with initial value problems. Finally, using S-transforms, we prove that discrete Mittag-Leffler function is the eigen function of Caputo type fractional difference operator \(\nabla^\alpha\).

Keywords:

Difference equation, fractional difference, Caputo type, initial value problem, Sumudu transform

Mathematics Subject Classification:

39A10, 39A99
  • Pages: 7-13
  • Date Published: 01-07-2013
  • Vol. 1 No. 03 (2013): Malaya Journal of Matematik (MJM)

R.R. Agarwal, Difference equations and inequalities, Marcel Dekker, New York, 1992.

M.A. Asiru, Sumudu transform and the solution of integral equations of convolution type, International Journal of Mathematical Education in Science and Technology, 32(6)(2001), 906-910. DOI: https://doi.org/10.1080/002073901317147870

M.A. Asiru, Further properties of the Sumudu transform and its applications, International Journal of Mathematical Education in Science and Technology, 33(3)(2002), 441-449. DOI: https://doi.org/10.1080/002073902760047940

M.A. Asiru, Classroom note: application of the Sumudu transform to discrete dynamic systems, International Journal of Mathematical Education in Science and Technology, 34(6)(2003), 944-949. DOI: https://doi.org/10.1080/00207390310001615499

F.B.M. Belgacem, A.A. Karaballi, and S.L. Kalla, Analytical investigations of the Sumudu transform and applications to integral production equations, Mathematical Problems in Engineering, 3(4)(2003), 103-118. DOI: https://doi.org/10.1155/S1024123X03207018

G.V.S.R. Deekshitulu and J. Jagan Mohan, Fractional difference inequalities of Gronwall - Bellman type, Acta et Commentationes Universitatis Tartuensis de Mathematica (to appear).

G.V.S.R. Deekshitulu and J. Jagan Mohan, Some New Fractional Difference Inequalities of Gronwall - Bellman Type, Mathematical Sciences, doi: 10.1186/2251-7456-6-69. DOI: https://doi.org/10.1186/2251-7456-6-69

H. Eltayeb, A. Kilicman, and B. Fisher, A new integral transform and associated distributions, Integral Transforms and Special Functions, 21(5)(2010), 367-379. DOI: https://doi.org/10.1080/10652460903335061

Fahd Jarad and Kenan Tas, On sumudu transform method in discrete fractional calculus, Abstract and Applied Analysis, Volume 2012, Article ID 270106, 16 pages, 2012. DOI: https://doi.org/10.1155/2012/270106

H.L. Gray and N.Zhang, On a new definition of the fractional difference, Math. Comp., 50(1988), 513-529. DOI: https://doi.org/10.1090/S0025-5718-1988-0929549-2

F. Jarad, K. Bayram, T. Abdeljawad and D. Baleanu, On the discrete sumudu transform, Romanian Reports in Physics, 64(2)(2012), 347-356.

A. Nagai, An integrable mapping with fractional difference, J. Phys. Soc. Jpn., 72(2003), 2181-2183. DOI: https://doi.org/10.1143/JPSJ.72.2181

G.K. Watugala, Sumudu transform: a new integral transform to solve differential equations and control engineering problems, International Journal of Mathematical Education in Science and Technology, 24(1)(1993), 35-43. DOI: https://doi.org/10.1080/0020739930240105

  • NA

Metrics

Metrics Loading ...

Published

01-07-2013

How to Cite

J. Jagan Mohan, and G.V.S.R. Deekshitulu. “Solutions of Fractional Difference Equations Using S-Transforms”. Malaya Journal of Matematik, vol. 1, no. 03, July 2013, pp. 7-13, doi:10.26637/mjm103/002.