Disjunctive total domination in some tree networks

Downloads

DOI:

https://doi.org/10.26637/mjm904/003

Abstract

Networking has been an essential field of multidisciplinary study, including computational theory, mathematics, social sciences, computer science, and other theoretical and applied sciences. The vulnerability determines the network's resistance to interruption of information flow after the breakdown of particular stations or transmission connections. Recently, a new vulnerability parameter namely the disjunctive total domination number has been defined by Henning and Naicker [14].  This measure finds the critical vertices with an important position in the graph. In this context, we consider and compute exact formulae for the disjunctive total domination number in some tree networks.

Keywords:

Network Design and Communication, Complex Networks, Disjunctive total domination number, Trees

Mathematics Subject Classification:

05C69, 68M10, 68R10
  • Vecdi Aytaç Faculty of Engineering, Department of Computer Engineering, Ege University, 35100 Izmir, Turkey.
  • Tufan Turacı Faculty of Engineering, Department of Computer Engineering, Pamukkale University, 20160 Denizli, Turkey.
  • Pages: 194-205
  • Date Published: 01-10-2021
  • Vol. 9 No. 04 (2021): Malaya Journal of Matematik (MJM)

C. ÇıFTçı, Disjunctive Total Domination of Some Shadow Distance Graphs, Journal of Mathematics and Applications, 3(2)(2020), 185-193.

C. ÇIFTÇı And V. Aytaç, Disjunctive total domination subdivision number of graphs, Fund. Inform., 174(1)(2020), 15-26.

C. ÇIfTÇI AND A. Aytaç, Porous Exponential Domination in Harary Graphs, Mathematical Notes, 107(2)(2020), 231-237.

K.S. BagGa, L.W. Beineke, W.D. Goddard, M.J. Lipman and R.E.Pippert, A survey of Integrity, Disc. Appl. Math., 37-38(1992), 13-28.

M. Cygan, M. PiliPCZuK AND R. SKReKovski, Relation between randic index and average distance of trees, MATCH Comm. in Math. and in Com. Chem., 66(2011), 605-612.

T.Cormen, C.E. Leiserson and R.L. Rivest , Introduction to algorithms, The MIT Press, Fourth edition(1990).

H. Frank and I.T. Frisch, Analysis and design of survivable Networks, IEEE Transactions on Communications Technology, 18(5)(1970), 501-519.

J.W.Grossman, F. Harary. And M. Klawe, Generalized ramsey theory for graphs, x: double star graphs, Disc. Math., 28(3)(1979), 247-254.

I. Gutman, Distance of Thorny Graphs, Publications De L'institut Mathematique Nouvelle serie, 63(77)(1998), 31-36.

T.W. Haynes, S.T. Hedetniemi And P.J. Slater, Fundamentals of domination in graphs, Marcel Dekker Inc., New York,(1998).

T. Turaci and M. Okten, Vulnerability of Mycielski Graphs via Residual Closeness, Ars Combinatoria, 118(2015), 419-427.

M.A. Henning And V. Naicker, Graphs with large disjunctive total domination number, Discrete Math. Theoret. Comput. Sci., 17(2015), 255-282.

M.A. Henning and V. NaIcker, Bounds on the Disjunctive Total Domination Number of a Tree, Discus. Math. Graph Theory, 36(2016), 153-171.

M.A. Henning and V. NAicker, Disjunctive total domination in graphs, J. Comb. Optim., 31(3)(2016), 1090-1110.

M.A. Henning And A. Yeo, Total domination in graphs, Springer Monographs in Mathematics, Springer, New York, (2013).

I. Mishkovski, M. Biey and L. Kocarev, Vulnerability of complex Networks, Commun. Nonlinear Sci Numer Simulat., 16(2011), 341-349.

M.V. Modha And K.K. Kanani, On k-cordial labeling of some graphs, British Jour.of Math. and Comp. Sci., 13(3)(2016), 1-7.

S. Nazeer, S.K. Khan, I. Kousar and W. Nazeer, Radio labeling and radio number for generalized caterpillar graphs, J. Appl. Math. and Infor, 34(5-6)(2016), 451-465.

F. Harrary,Graph Theory, Addison-Wesley: Boston, MA, USA, (1969).

R. Durgut, H. Kutucu and T. Turaci, Global distribution center number of some graphs and an algorithm, RAIRO-Operations Research, 53(4)(2019), 1217-1227.

  • NA

Metrics

Metrics Loading ...

Published

01-10-2021

How to Cite

Aytaç, V., and T. Turacı. “Disjunctive Total Domination in Some Tree Networks”. Malaya Journal of Matematik, vol. 9, no. 04, Oct. 2021, pp. 194-05, doi:10.26637/mjm904/003.