Some oscillation theorems for second order nonlinear neutral type difference equations

Downloads

DOI:

https://doi.org/10.26637/mjm103/006

Abstract

In this paper some new sufficient conditions for the oscillatory behavior of second order nonlinear neutral type difference equation of the form
Δ(anΔ(xn+pnxnk))+qnf(xσ(n+1))=0
where {an},{pn} and {qn} are real sequences, {σ(n)} is a sequence of integers, k is a positive integer and f:RR is continuous with uf(u)>0 for u0 are established. Examples are provided to illustrate the main results.

Keywords:

Nonlinear, neutral type difference equation, oscillation

Mathematics Subject Classification:

39A11
  • E. Thandapani Ramanujan Institute For Advanced Study in Mathematics, University of Madras, Chennai-600005, Tamil Nadu, India.
  • V. Balasubramanian Department of Mathematics, Periyar University, Salem-636 011, Tamil Nadu, India.
  • Pages: 34-43
  • Date Published: 01-07-2013
  • Vol. 1 No. 03 (2013): Malaya Journal of Matematik (MJM)

R.P. Agarwal, Difference Equations and Inequalities, Theory, Methods and Applications, Second Edition, Marcel Dekker, New York, 2000. DOI: https://doi.org/10.1201/9781420027020

R.P. Agarwal, M. Bohner S.R. Grace, and D.O’Regan, Discrete Oscillation Theory, Hindawi Publ.Corp., New York, 2005. DOI: https://doi.org/10.1155/9789775945198

R.P.Agarwal, M.M.S. Manuel and E. Thandapani, Oscillatory and nonoscillatory behavior of second order neutral delay difference equations, Math. Comput. Model., 24(1)(1996), 5-11. DOI: https://doi.org/10.1016/0895-7177(96)00076-3

R.P. Agarwal, M.M.S. Manuel and E. Thandapani, Oscillatory and nonoscillatory behavior of second order neutral delay difference equations II, Appl. Math. Lett., 10(2)(1997), 103-109. DOI: https://doi.org/10.1016/S0893-9659(97)00019-0

D.Bainov and D.P.Mishev, Classification and existence of positive solutions of second order nonlinear neutral difference equations, Funk. Ekavac., 40(1997), 371-393.

S. Elizabeth, J.R. Graef, P. Sundaram and E. Thandapani, Classifying nonoscillatory solutions and oscillation of neutral difference equations, J. Diff. Eqns. Appl., 11(7)(2005), 605-618. DOI: https://doi.org/10.1080/10236190412331334491

J. Jiang, Oscillation of second order nonlinear neutral delay difference equations, Appl. Math. Comput., 146(2003), 791-801. DOI: https://doi.org/10.1016/S0096-3003(02)00631-8

E. Thandapani and K. Mahalingam, Oscillation and nonoscillation of second order neutral delay difference equations, Czech. Math.J., 53(128)(2003), 935-947. DOI: https://doi.org/10.1023/B:CMAJ.0000024532.03496.b2

E. Thandapani and M.M.S. Manuel, Asymptotic and oscillatory behavior of second order neutral delay difference equations, Engin. Simul., 15(1998), 423-430.

E. Thandapani and P. Mohankumar, Oscillation and nonoscillation of nonlinear neutral delay difference equations, Tamkang J. Math., 38(4) (2007), 323-333. DOI: https://doi.org/10.5556/j.tkjm.38.2007.66

E. Thandapani and S. Selvarangam, Oscillation of second order Emden-Fowler type neutral difference equations, Dyn. Cont. Dis. Impul. Sys., 19(2012), 453-469. DOI: https://doi.org/10.1186/1687-1847-2012-4

D.M. Wang and Z.T. Xu, Oscillation of second order quasilinear neutral delay difference equations, Acta Math. Appl. Sinica., 27(1)(2011), 93-104. DOI: https://doi.org/10.1007/s10255-011-0043-4

B.G.Zhang, Oscillation and asymptotic behavior of second order difference equations, J.Math. Anal. Appl., 173(1993), 58-68. DOI: https://doi.org/10.1006/jmaa.1993.1052

B.G. Zhang and S.H. Saker, Kamenev-type oscillation criteria for nonlinear neutral delay difference equations, Indian J.Pure Appl. Math., 34(11)(2003), 1571-1584.

G. Zhang and Y. Geo, Oscillation Theory for Difference Equations, Publishing House of Higher Education, Beijing, 2001.

Z. Zhang, J. Chen and C. Zhang, Oscillation of solutions for second order nonlinear difference equations with nonlinear neutral term, Comput. Math. Appl., 21(2001), 1487-1494. DOI: https://doi.org/10.1016/S0898-1221(01)00113-4

  • NA

Metrics

PDF views
59
Jul 2013Jan 2014Jul 2014Jan 2015Jul 2015Jan 2016Jul 2016Jan 2017Jul 2017Jan 2018Jul 2018Jan 2019Jul 2019Jan 2020Jul 2020Jan 2021Jul 2021Jan 2022Jul 2022Jan 2023Jul 2023Jan 2024Jul 2024Jan 2025Jul 2025Jan 20266.0
|

Published

01-07-2013

How to Cite

E. Thandapani, and V. Balasubramanian. “Some Oscillation Theorems for Second Order Nonlinear Neutral Type Difference Equations”. Malaya Journal of Matematik, vol. 1, no. 03, July 2013, pp. 34-43, doi:10.26637/mjm103/006.