Some oscillation theorems for second order nonlinear neutral type difference equations

Downloads

DOI:

https://doi.org/10.26637/mjm103/006

Abstract

In this paper some new sufficient conditions for the oscillatory behavior of second order nonlinear neutral type difference equation of the form
$$
\Delta\left(a_n \Delta\left(x_n+p_n x_{n-k}\right)\right)+q_n f\left(x_{\sigma(n+1)}\right)=0
$$
where \(\left\{a_n\right\},\left\{p_n\right\}\) and \(\left\{q_n\right\}\) are real sequences, \(\{\sigma(n)\}\) is a sequence of integers, \(k\) is a positive integer and \(f: \mathbb{R} \rightarrow \mathbb{R}\) is continuous with \(u f(u)>0\) for \(u \neq 0\) are established. Examples are provided to illustrate the main results.

Keywords:

Nonlinear, neutral type difference equation, oscillation

Mathematics Subject Classification:

39A11
  • E. Thandapani Ramanujan Institute For Advanced Study in Mathematics, University of Madras, Chennai-600005, Tamil Nadu, India.
  • V. Balasubramanian Department of Mathematics, Periyar University, Salem-636 011, Tamil Nadu, India.
  • Pages: 34-43
  • Date Published: 01-07-2013
  • Vol. 1 No. 03 (2013): Malaya Journal of Matematik (MJM)

R.P. Agarwal, Difference Equations and Inequalities, Theory, Methods and Applications, Second Edition, Marcel Dekker, New York, 2000. DOI: https://doi.org/10.1201/9781420027020

R.P. Agarwal, M. Bohner S.R. Grace, and D.O’Regan, Discrete Oscillation Theory, Hindawi Publ.Corp., New York, 2005. DOI: https://doi.org/10.1155/9789775945198

R.P.Agarwal, M.M.S. Manuel and E. Thandapani, Oscillatory and nonoscillatory behavior of second order neutral delay difference equations, Math. Comput. Model., 24(1)(1996), 5-11. DOI: https://doi.org/10.1016/0895-7177(96)00076-3

R.P. Agarwal, M.M.S. Manuel and E. Thandapani, Oscillatory and nonoscillatory behavior of second order neutral delay difference equations II, Appl. Math. Lett., 10(2)(1997), 103-109. DOI: https://doi.org/10.1016/S0893-9659(97)00019-0

D.Bainov and D.P.Mishev, Classification and existence of positive solutions of second order nonlinear neutral difference equations, Funk. Ekavac., 40(1997), 371-393.

S. Elizabeth, J.R. Graef, P. Sundaram and E. Thandapani, Classifying nonoscillatory solutions and oscillation of neutral difference equations, J. Diff. Eqns. Appl., 11(7)(2005), 605-618. DOI: https://doi.org/10.1080/10236190412331334491

J. Jiang, Oscillation of second order nonlinear neutral delay difference equations, Appl. Math. Comput., 146(2003), 791-801. DOI: https://doi.org/10.1016/S0096-3003(02)00631-8

E. Thandapani and K. Mahalingam, Oscillation and nonoscillation of second order neutral delay difference equations, Czech. Math.J., 53(128)(2003), 935-947. DOI: https://doi.org/10.1023/B:CMAJ.0000024532.03496.b2

E. Thandapani and M.M.S. Manuel, Asymptotic and oscillatory behavior of second order neutral delay difference equations, Engin. Simul., 15(1998), 423-430.

E. Thandapani and P. Mohankumar, Oscillation and nonoscillation of nonlinear neutral delay difference equations, Tamkang J. Math., 38(4) (2007), 323-333. DOI: https://doi.org/10.5556/j.tkjm.38.2007.66

E. Thandapani and S. Selvarangam, Oscillation of second order Emden-Fowler type neutral difference equations, Dyn. Cont. Dis. Impul. Sys., 19(2012), 453-469. DOI: https://doi.org/10.1186/1687-1847-2012-4

D.M. Wang and Z.T. Xu, Oscillation of second order quasilinear neutral delay difference equations, Acta Math. Appl. Sinica., 27(1)(2011), 93-104. DOI: https://doi.org/10.1007/s10255-011-0043-4

B.G.Zhang, Oscillation and asymptotic behavior of second order difference equations, J.Math. Anal. Appl., 173(1993), 58-68. DOI: https://doi.org/10.1006/jmaa.1993.1052

B.G. Zhang and S.H. Saker, Kamenev-type oscillation criteria for nonlinear neutral delay difference equations, Indian J.Pure Appl. Math., 34(11)(2003), 1571-1584.

G. Zhang and Y. Geo, Oscillation Theory for Difference Equations, Publishing House of Higher Education, Beijing, 2001.

Z. Zhang, J. Chen and C. Zhang, Oscillation of solutions for second order nonlinear difference equations with nonlinear neutral term, Comput. Math. Appl., 21(2001), 1487-1494. DOI: https://doi.org/10.1016/S0898-1221(01)00113-4

  • NA

Metrics

Metrics Loading ...

Published

01-07-2013

How to Cite

E. Thandapani, and V. Balasubramanian. “Some Oscillation Theorems for Second Order Nonlinear Neutral Type Difference Equations”. Malaya Journal of Matematik, vol. 1, no. 03, July 2013, pp. 34-43, doi:10.26637/mjm103/006.