Triparametric self information function and entropy
Downloads
DOI:
https://doi.org/10.26637/mjm103/008Abstract
In this paper we start with a triparametric self information function and triparametric entropy. Some familiar entropies are derived as particular cases. A measure called information deviation and some generalization of Kullback’s information are obtained under some boundary conditions.
Keywords:
Shannon entropy, Kullback’s information, joint entropy, generalized inaccuracy, information deviationMathematics Subject Classification:
94A15, 94A24, 26D15- Pages: 49-54
- Date Published: 01-07-2013
- Vol. 1 No. 03 (2013): Malaya Journal of Matematik (MJM)
J. Aczel, Lectures on Functional Equations and Their Applications, Academic Press, New York, 1966.
C. Arndt, Information Measure-Information and Its Description in Science and Engineering, Springer, Berlin, 2001.
T.W. Chaundy, and J.B. Mcleod, On a functional equation, Proc. Edinb. Math. Soc. Edinb. Notes, 43(1960), 7-8. DOI: https://doi.org/10.1017/S0950184300003244
Z. Darcozy, Generalized information function, Inf. Control, 16(1970), 35-51. DOI: https://doi.org/10.1016/S0019-9958(70)80040-7
J. Harvda, and F. Charvat, Quantification method of classification processes, Kybernetika, 3(1967), 30-35.
P. Kannapan, On Shannon’s entropy, directed divergence and inaccuracy, Z. Wahrs. Verw. Ceb., 22(1972), 95-100. DOI: https://doi.org/10.1007/BF00532728
D.F. Kerridge, Inaccuracy and inference, J.R. Statist. Soc., B23(1961), 184-194. DOI: https://doi.org/10.1111/j.2517-6161.1961.tb00404.x
S. Kullback, Information Theory and Statistics, John Wiley, New York, 1959.
D.P. Mittal, On Some functional equations concerning entropy, directed divergence and inaccuracy, Metrika, 22(1975), 35-45. DOI: https://doi.org/10.1007/BF01899712
C.E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J., 27(1948), 623-658. DOI: https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
B.D. Sharma, and I.J. Taneja, Entropy of type (α,β) and other generalized measures in information theory, Metrika, 22(1975), 205-215. DOI: https://doi.org/10.1007/BF01899728
- NA
Similar Articles
- E. Thandapani, V. Balasubramanian, Some oscillation theorems for second order nonlinear neutral type difference equations , Malaya Journal of Matematik: Vol. 1 No. 03 (2013): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2013 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.