New existence and uniqueness results for an \(\alpha\) order boundary value problem

Downloads

DOI:

https://doi.org/10.26637/mjm104/002

Abstract

This paper is concerned with the existence of solutions for a non local fractional boundary value problem with integral conditions. New existence and uniqueness results are established using Banach fixed point theorem. Other existence results are obtained using Schauder and Krasnoselskii theorems. As an application, we give an example to illustrate our results.

Keywords:

Caputo derivative, fixed point theorem, boundary value problem

Mathematics Subject Classification:

26A33, 34B15
  • Zoubir Dahmani Laboratory of Pure and Applied Mathematics, LPAM, Faculty SEI, UMAB University of Mostaganem, Algeria.
  • Mohamed Amin Abdellaoui Laboratory of Pure and Applied Mathematics, LPAM, Faculty SEI, UMAB University of Mostaganem, Algeria.
  • Pages: 10-19
  • Date Published: 01-10-2013
  • Vol. 1 No. 04 (2013): Malaya Journal of Matematik (MJM)

K. Diethelm and A.D. Freed, On the Solution of Nonlinear Fractional Order Differential Equations Used in the Modeling of Viscoplasticity, Springer Verlag, Heidelberg, 1999. DOI: https://doi.org/10.1007/978-3-642-60185-9_24

A.M.A. El-Sayed, Fractional order diffusion-wave equations, Intern. J. Theo. Physics, 35(1996), 311-322. DOI: https://doi.org/10.1007/BF02083817

L. Gaul, P. Klein and S. Kempe, Damping description involving fractional operators, Mech. Systems Signal Processing, 5(1991), 81-88. DOI: https://doi.org/10.1016/0888-3270(91)90016-X

R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000. DOI: https://doi.org/10.1142/3779

A.A. Kilbas, Hari M. Srivastava, Juan J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies. 204. Elsevier Science B.V., Amsterdam, 2006.

M.A. Krasnoselskii, Positive Solutions of Operator Equations, Nordhoff Groningen Netherland, 1964.

V. Lakshmikantham, A.S. Vatsala, Basic theory of fractional differential equations, Nonlinear Anal. Theory Methods, 69(2008), 2677-2682. DOI: https://doi.org/10.1016/j.na.2007.08.042

F. Mainardi, Fractional calculus: Some basic problems in continuum and statistical mechanics, Fractals and Fractional Calculus in Continuum Mechanics, Springer-Verlag, Wien, 1997. DOI: https://doi.org/10.1007/978-3-7091-2664-6_7

F. Metzler, W. Schick, H.G. Kilian and T.F. Nonnenmacher, Relaxation in filled polymers: A fractional calculus approach, J. Chem. Phys., 103(1995), 7180-7186. DOI: https://doi.org/10.1063/1.470346

I. Podlubny, Fractional Differential Equations, Mathematics in Sciences and Engineering, Academic Press, San Diego, 1999.

H.E. Zhang, J.P. Sun, Existence and iteration of monotone positive solutions for third-order nonlocal BVPs involving integral conditions, Electronic Journal of Qualitative Theory of Differential Equations, 18(2012), 1-9. DOI: https://doi.org/10.14232/ejqtde.2012.1.18

  • NA

Metrics

Metrics Loading ...

Published

01-10-2013

How to Cite

Zoubir Dahmani, and Mohamed Amin Abdellaoui. “New Existence and Uniqueness Results for an \(\alpha\) Order Boundary Value Problem”. Malaya Journal of Matematik, vol. 1, no. 04, Oct. 2013, pp. 10-19, doi:10.26637/mjm104/002.