A Variant of Jensen’s Inequalities

Downloads

DOI:

https://doi.org/10.26637/mjm104/006

Abstract

In this paper, we give an estimate from below and from above of a variant of Jensen’s Inequalities for convex functions in the discrete and continuous cases.

Keywords:

Convex functions, Jensen inequalities, Integral inequalities

Mathematics Subject Classification:

52A40, 52A41
  • Pages: 54-60
  • Date Published: 01-10-2013
  • Vol. 1 No. 04 (2013): Malaya Journal of Matematik (MJM)

I. Budimir, S. S. Dragomir, J. E. Peˇ cari´ c, Further reverse results for Jensen’s discrete inequality and applications in information theory, JIPAM. J. Inequal. Pure Appl. Math. 2 (2001), no. 1, Article 5, 14 pp.

D. S. Mitrinovi´ c, J. E. Peˇ cari´ c, A. M. Fink, Classical and new inequalities in analysis. Mathematics and its Applications (East European Series), 61. Kluwer Academic Publishers Group, Dordrecht, 1993.

S. M. Malamud, Some complements to the Jensen and Chebyshev inequalities and a problem of W. Walter, Proc. Amer. Math. Soc. 129 (2001), no. 9, 2671–2678. DOI: https://doi.org/10.1090/S0002-9939-01-05849-X

A. McD. Mercer, A Variant of Jensen’s inequality, JIPAM. J. Inequal. Pure Appl. Math. 4 (2003), no. 4, Article 73, 2 pp.

S. Simi´ c, Jensen’s inequality and new entropy bounds, Appl. Math. Lett. 22 (2009), no. 8, 1262–1265. DOI: https://doi.org/10.1016/j.aml.2009.01.040

  • NA

Metrics

Metrics Loading ...

Published

01-10-2013

How to Cite

Abdallah El Farissi, Benharrat Bela¨ıdi, and Zinelaâbidine Latreuch. “A Variant of Jensen’s Inequalities”. Malaya Journal of Matematik, vol. 1, no. 04, Oct. 2013, pp. 54-60, doi:10.26637/mjm104/006.