Anti-periodic boundary value problems involving nonlinear fractional \(q\)-difference equations
Downloads
DOI:
https://doi.org/10.26637/mjm104/012Abstract
In this paper, we consider a class of anti-periodic boundary value problems involving nonlinear fractional \(q\)-difference equations. Some existence and uniqueness results are obtained by applying some standard fixed point theorems. As applications, some examples are presented to illustrate the main results.
Keywords:
anti-periodic boundary conditions, existence and uniqueness, fixed point theorem, Fractional \(q\)-difference equationsMathematics Subject Classification:
34B18, 39A13- Pages: 107-114
- Date Published: 01-10-2013
- Vol. 1 No. 04 (2013): Malaya Journal of Matematik (MJM)
R.P. Agarwal, Certain fractional q-integrals and q-derivatives, Proc. Cambridge Philos. Soc., 66 (1969), 365-370. DOI: https://doi.org/10.1017/S0305004100045060
B. Ahmad, Existence of solutions for fractional differential equations of order q ∈ (2,3] with anti-periodic boundary conditions, J. Appl. Math. Comput., 34 (2010), 385-391. DOI: https://doi.org/10.1007/s12190-009-0328-4
B. Ahmad, J.J. Nieto, Existence of solutions for anti-periodic boundary value problems involving fractional differential equations via Leray-Schauder degree theory, Topol. Methods Nonlinear Anal., 35 (2010), 295-304.
B. Ahmad, J.J. Nieto, Anti-periodic fractional boundary value problems, Comput. Math. Appl., 62 (2011), 1150-1156. DOI: https://doi.org/10.1016/j.camwa.2011.02.034
B. Ahmad, V. Otero-Espinar, Existence of solutions for fractional differential inclusions with anti-periodic boundary conditions, Bound. Value Probl., 2009 (2009), Art. ID 625347, 11 pages. DOI: https://doi.org/10.1155/2009/625347
B. Ahmad, S. Ntouyas, and I. Purnaras, Existence results for nonlocal boundary value problems of non-linear fractional q-difference equations, Adv. Difference Equ., 2012 (2012) 140, 26 pages. DOI: https://doi.org/10.1186/1687-1847-2012-140
A. Alsaedi, Existence of solutions for integrodifferential equations of fractional order with antiperiodic boundary conditions, Int. J. Differ. Equ., 2009 (2009), Art. ID 417606, 9 pages. DOI: https://doi.org/10.1155/2009/417606
W.A. Al-Salam, Some fractional q-integrals and q-derivatives, Proc. Edinb. Math. Soc., 15 (2) (1966-1967), 135-140. DOI: https://doi.org/10.1017/S0013091500011469
F.M. Atici, P.W. Eloe, Fractional q-calculus on a time scale, J. Nonlinear Math. Phys., 14 (2007), 333-344. DOI: https://doi.org/10.2991/jnmp.2007.14.3.4
Y. Chen, J.J. Nieto, D. O’Regan, Anti-periodic solutions for evolution equations associated with maximal monotone mappings, Appl. Math. Lett., 24 (2011), 302-307. DOI: https://doi.org/10.1016/j.aml.2010.10.010
M. El-Shahed, F.M. Al-Askar, Positive solutions for boundary value problem of nonlinear fractional q-difference equation, ISRN Math. Anal., 2011 (2011), Art. ID 385459, 12 pages.
M. El-Shahed, F.M. Al-Askar, On the existence and uniqueness of solutions for q-fractional boundary value problem, Int. J. Math. Anal., 5 (2011), 1619-1630. DOI: https://doi.org/10.5402/2011/385459
M. El-Shahed, H.A. Hassan, Positive solutions of q-difference equation, Proc. Amer. Math. Soc., 138 (2010), 1733-1738. DOI: https://doi.org/10.1090/S0002-9939-09-10185-5
R.A.C. Ferreira, Nontrivial solutions for fractional q-difference boundary value problems, Electron. J. Qual. Theory Differ. Equ., 70 (2010), 1-10. DOI: https://doi.org/10.14232/ejqtde.2010.1.70
R.A.C. Ferreira, Positive solutions for a class of boundary value problems with fractional q-differences, Comput. Math. Appl., 61 (2011), 367-373. DOI: https://doi.org/10.1016/j.camwa.2010.11.012
J.R. Graef, L. Kong, Positive solutions for a class of higher order boundary value problems with fractional q-derivatives, Appl. Math. Comput., 218 (2012), 9682-9689. DOI: https://doi.org/10.1016/j.amc.2012.03.006
F.H. Jackson, On qfunctions and a certain difference operator, Trans. Roy. Soc. Edinburgh, 46 (1908), 253-281. DOI: https://doi.org/10.1017/S0080456800002751
F.H. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193-203.
V. Kac and P. Cheung, Quantum Calculus, Springer, New York, NY, USA, 2002. DOI: https://doi.org/10.1007/978-1-4613-0071-7
S. Liang, J. Zhang, Existence and uniqueness of positive solutions for three-point boundary value problem with fractional q-differences, J. Appl. Math. Comput., 40 (2012), 277-288. DOI: https://doi.org/10.1007/s12190-012-0551-2
J. Ma and J. Yang, Existence of solutions for multi-point boundary value problem of fractional q-difference equation, Electron. J. Qual. Theory Differ. Equ., 92 (2011), 1-10. DOI: https://doi.org/10.14232/ejqtde.2011.1.92
P.M. Rajkovi´ c, S.D. Marinkovi´ c, and M.S. Stankovi´ c, On q-analogues of caputo derivative and Mittag-Leffler function, Fract. Calc. Appl. Anal., 10 (2007), 359-373.
P.M. Rajkovi´ c, S.D. Marinkovi´ c, and M.S. Stankovi´ c, Fractional integrals and derivatives in q-calculus, Appl. Anal. Discrete Math., 1 (2007), 311-323. DOI: https://doi.org/10.2298/AADM0701311R
M.S. Stankovi´ c, P.M. Rajkovi´ c, and S.D. Marinkovi´ c, On q-fractional derivatives of Riemann-Liouville and Caputo type, 2009, http://arxiv.org/abs/0909.0387.
D.R. Smart, Fixed Point Theorems, Cambridge University Press, 1980.
W. Yang, Positive solutions for boundary value problems involving nonlinear fractional q-difference equations, Differ. Equ. Appl., 5 (2013), 205-219. DOI: https://doi.org/10.7153/dea-05-13
Y. Zhao, H. Chen, Q. Zhang, Existence results for fractional q-difference equations with nonlocal q-integral boundary conditions, Adv. Difference Equ., 2013 (2013) 48, 15 pages. DOI: https://doi.org/10.1186/1687-1847-2013-48
Y. Zhao, H. Chen, Q. Zhang, Existence and multiplicity of positive solutions for nonhomogeneous boundary value problems with fractional q-derivative, Bound. Value Probl., 2013 (2013) 103, 15 pages. DOI: https://doi.org/10.1186/1687-2770-2013-103
Y. Zhao, G. Ye, H. Chen, Multiple positive solutions of a singular semipositone integral boundary value problem for fractional q-derivatives equation, Abstr. Appl. Anal., 2013 (2013), Art. ID 643571, 12 pages. DOI: https://doi.org/10.1155/2013/643571
- NA
Similar Articles
- M. Lellis Thivagar, Nirmala Rebecca Paul, On \(\widetilde{g}_\alpha\)-sets in bitopological spaces , Malaya Journal of Matematik: Vol. 1 No. 04 (2013): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2013 MJM

This work is licensed under a Creative Commons Attribution 4.0 International License.