Anti-periodic boundary value problems involving nonlinear fractional \(q\)-difference equations

Downloads

DOI:

https://doi.org/10.26637/mjm104/012

Abstract

In this paper, we consider a class of anti-periodic boundary value problems involving nonlinear fractional \(q\)-difference equations. Some existence and uniqueness results are obtained by applying some standard fixed point theorems. As applications, some examples are presented to illustrate the main results.

Keywords:

anti-periodic boundary conditions, existence and uniqueness, fixed point theorem, Fractional \(q\)-difference equations

Mathematics Subject Classification:

34B18, 39A13
  • Wengui Yang Ministry of Public Education, Sanmenxia Polytechnic, Sanmenxia 472200, China.
  • Pages: 107-114
  • Date Published: 01-10-2013
  • Vol. 1 No. 04 (2013): Malaya Journal of Matematik (MJM)

R.P. Agarwal, Certain fractional q-integrals and q-derivatives, Proc. Cambridge Philos. Soc., 66 (1969), 365-370. DOI: https://doi.org/10.1017/S0305004100045060

B. Ahmad, Existence of solutions for fractional differential equations of order q ∈ (2,3] with anti-periodic boundary conditions, J. Appl. Math. Comput., 34 (2010), 385-391. DOI: https://doi.org/10.1007/s12190-009-0328-4

B. Ahmad, J.J. Nieto, Existence of solutions for anti-periodic boundary value problems involving fractional differential equations via Leray-Schauder degree theory, Topol. Methods Nonlinear Anal., 35 (2010), 295-304.

B. Ahmad, J.J. Nieto, Anti-periodic fractional boundary value problems, Comput. Math. Appl., 62 (2011), 1150-1156. DOI: https://doi.org/10.1016/j.camwa.2011.02.034

B. Ahmad, V. Otero-Espinar, Existence of solutions for fractional differential inclusions with anti-periodic boundary conditions, Bound. Value Probl., 2009 (2009), Art. ID 625347, 11 pages. DOI: https://doi.org/10.1155/2009/625347

B. Ahmad, S. Ntouyas, and I. Purnaras, Existence results for nonlocal boundary value problems of non-linear fractional q-difference equations, Adv. Difference Equ., 2012 (2012) 140, 26 pages. DOI: https://doi.org/10.1186/1687-1847-2012-140

A. Alsaedi, Existence of solutions for integrodifferential equations of fractional order with antiperiodic boundary conditions, Int. J. Differ. Equ., 2009 (2009), Art. ID 417606, 9 pages. DOI: https://doi.org/10.1155/2009/417606

W.A. Al-Salam, Some fractional q-integrals and q-derivatives, Proc. Edinb. Math. Soc., 15 (2) (1966-1967), 135-140. DOI: https://doi.org/10.1017/S0013091500011469

F.M. Atici, P.W. Eloe, Fractional q-calculus on a time scale, J. Nonlinear Math. Phys., 14 (2007), 333-344. DOI: https://doi.org/10.2991/jnmp.2007.14.3.4

Y. Chen, J.J. Nieto, D. O’Regan, Anti-periodic solutions for evolution equations associated with maximal monotone mappings, Appl. Math. Lett., 24 (2011), 302-307. DOI: https://doi.org/10.1016/j.aml.2010.10.010

M. El-Shahed, F.M. Al-Askar, Positive solutions for boundary value problem of nonlinear fractional q-difference equation, ISRN Math. Anal., 2011 (2011), Art. ID 385459, 12 pages.

M. El-Shahed, F.M. Al-Askar, On the existence and uniqueness of solutions for q-fractional boundary value problem, Int. J. Math. Anal., 5 (2011), 1619-1630. DOI: https://doi.org/10.5402/2011/385459

M. El-Shahed, H.A. Hassan, Positive solutions of q-difference equation, Proc. Amer. Math. Soc., 138 (2010), 1733-1738. DOI: https://doi.org/10.1090/S0002-9939-09-10185-5

R.A.C. Ferreira, Nontrivial solutions for fractional q-difference boundary value problems, Electron. J. Qual. Theory Differ. Equ., 70 (2010), 1-10. DOI: https://doi.org/10.14232/ejqtde.2010.1.70

R.A.C. Ferreira, Positive solutions for a class of boundary value problems with fractional q-differences, Comput. Math. Appl., 61 (2011), 367-373. DOI: https://doi.org/10.1016/j.camwa.2010.11.012

J.R. Graef, L. Kong, Positive solutions for a class of higher order boundary value problems with fractional q-derivatives, Appl. Math. Comput., 218 (2012), 9682-9689. DOI: https://doi.org/10.1016/j.amc.2012.03.006

F.H. Jackson, On qfunctions and a certain difference operator, Trans. Roy. Soc. Edinburgh, 46 (1908), 253-281. DOI: https://doi.org/10.1017/S0080456800002751

F.H. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193-203.

V. Kac and P. Cheung, Quantum Calculus, Springer, New York, NY, USA, 2002. DOI: https://doi.org/10.1007/978-1-4613-0071-7

S. Liang, J. Zhang, Existence and uniqueness of positive solutions for three-point boundary value problem with fractional q-differences, J. Appl. Math. Comput., 40 (2012), 277-288. DOI: https://doi.org/10.1007/s12190-012-0551-2

J. Ma and J. Yang, Existence of solutions for multi-point boundary value problem of fractional q-difference equation, Electron. J. Qual. Theory Differ. Equ., 92 (2011), 1-10. DOI: https://doi.org/10.14232/ejqtde.2011.1.92

P.M. Rajkovi´ c, S.D. Marinkovi´ c, and M.S. Stankovi´ c, On q-analogues of caputo derivative and Mittag-Leffler function, Fract. Calc. Appl. Anal., 10 (2007), 359-373.

P.M. Rajkovi´ c, S.D. Marinkovi´ c, and M.S. Stankovi´ c, Fractional integrals and derivatives in q-calculus, Appl. Anal. Discrete Math., 1 (2007), 311-323. DOI: https://doi.org/10.2298/AADM0701311R

M.S. Stankovi´ c, P.M. Rajkovi´ c, and S.D. Marinkovi´ c, On q-fractional derivatives of Riemann-Liouville and Caputo type, 2009, http://arxiv.org/abs/0909.0387.

D.R. Smart, Fixed Point Theorems, Cambridge University Press, 1980.

W. Yang, Positive solutions for boundary value problems involving nonlinear fractional q-difference equations, Differ. Equ. Appl., 5 (2013), 205-219. DOI: https://doi.org/10.7153/dea-05-13

Y. Zhao, H. Chen, Q. Zhang, Existence results for fractional q-difference equations with nonlocal q-integral boundary conditions, Adv. Difference Equ., 2013 (2013) 48, 15 pages. DOI: https://doi.org/10.1186/1687-1847-2013-48

Y. Zhao, H. Chen, Q. Zhang, Existence and multiplicity of positive solutions for nonhomogeneous boundary value problems with fractional q-derivative, Bound. Value Probl., 2013 (2013) 103, 15 pages. DOI: https://doi.org/10.1186/1687-2770-2013-103

Y. Zhao, G. Ye, H. Chen, Multiple positive solutions of a singular semipositone integral boundary value problem for fractional q-derivatives equation, Abstr. Appl. Anal., 2013 (2013), Art. ID 643571, 12 pages. DOI: https://doi.org/10.1155/2013/643571

  • NA

Metrics

Metrics Loading ...

Published

01-10-2013

How to Cite

Wengui Yang. “Anti-Periodic Boundary Value Problems Involving Nonlinear Fractional \(q\)-Difference Equations”. Malaya Journal of Matematik, vol. 1, no. 04, Oct. 2013, pp. 107-14, doi:10.26637/mjm104/012.