Error detection of irreducible cyclic codes on \(q\)-ary symmetric channel
Downloads
DOI:
https://doi.org/10.26637/mjm104/013Abstract
Irreducible cyclic codes are well-known classes of block codes. These codes have wide range of applications specifically in deep space. Their weight distribution of Irreducible cyclic codes is known in only a few cases specifically they are known for binary cyclic codes. Previously, it has been shown that irreducible binary cyclic codes of even dimension and their duals are either proper or not good for error detection. In this correspondence it has been established that irreducible cyclic codes in number of cases are proper when transmitted over \(q\)-ary symmetric channel. The nonzero weights of the codes treated with in this paper vary between one and four.
Keywords:
binary cyclic codes, irreducible cyclic codes, weight distribution, probability of undetected errorMathematics Subject Classification:
68P30, 94A24- Pages: 115-122
- Date Published: 01-10-2013
- Vol. 1 No. 04 (2013): Malaya Journal of Matematik (MJM)
Aubry, Y., & Langevin, P, On the weights of binary irreducible cyclic codes, Proc. workshop on Coding and Cryptography, Bergen, Norway, (2005), pp. 161-169. DOI: https://doi.org/10.1007/11779360_5
Baumert, L. D. & McEliece, R. J, Weights of irreducible cyclic codes, Inform. Contr., 20(1972), pp. 158-175. DOI: https://doi.org/10.1016/S0019-9958(72)90354-3
Baumert, L. D., & Mykkeltveit, J, Weight distributions of some irreducible cyclic codes, DSN Progr. Rep., 16(1973), pp. 128-131.
Baumert, L. D., & Mykkeltveit, J, Weight Distribution Of Some Irreducible Cyclic Codes, JPL Technical Report, XVI(1974), pp. 32-1526.
Delsarte, P., & Goethals, J. M, Irreducible binary cyclic codes of even dimension, Proc. 2nd Chapel Hill Conf. Combinatorial Mathematics and Its Applications, Chapel Hill, NC, (1970), pp. 100-113.
Ding, C, The weight distribution of some irreducible cyclic codes, IEEE Trans. Inf. Theory, 55(3)(2009), pp. 955-960. DOI: https://doi.org/10.1109/TIT.2008.2011511
Ding, C., Helleseth, T., Niederreiter, H. & Xing, C, The Minimum Distance of the Duals of Binary Irreducible Cyclic Codes, IEEE Trans. Inf. Theory, 48(3)(2992), pp. 2679-2689. DOI: https://doi.org/10.1109/TIT.2002.802593
Dodunekova, R., Dodunekov, S., & Nikolova, E, A survey on proper codes, Disc. Appl. Math., 156(9)(2008), pp. 1499-1509. DOI: https://doi.org/10.1016/j.dam.2005.06.014
Helleseth, T., Klove, T. & Mykkeltveit, J, The weight distribution of irreducible cyclic codes with block lengths n 1 (((q l − 1/N)), Discr. Math., 18(1977), pp. 179-211. DOI: https://doi.org/10.1016/0012-365X(77)90078-4
Kana, L. N., & Sastry, A. R. K, Models for channels with memory and their application to error control, Proc. IEEE, 66(1978), pp. 724-744. DOI: https://doi.org/10.1109/PROC.1978.11013
Kasami, T., & Lin, S, On the probability of undetected error for the maximum distance separable codes, IEEE Trans. Commun., COM-32(1987), pp. 998-1006. DOI: https://doi.org/10.1109/TCOM.1984.1096175
Kasami, T., Klove, T. & Lin, S, Linear block codes for error detection, IEEE Trans. Inform. Theory, IT-29(1)(1983), pp. 131-136. DOI: https://doi.org/10.1109/TIT.1983.1056615
Klove, T, The Probability of Undetected Error When A Code Is Used For Error Correction and Detection, IEEE Trans. Inform. Theory, IT-30(2)(1984), pp. 388-392. DOI: https://doi.org/10.1109/TIT.1984.1056865
Leung C.,& Hellman M. E, Concerning a bound on undetected error probability, IEEE Tmns. Inform. Theory, IT-22(2)(1976), pp. 235-237. DOI: https://doi.org/10.1109/TIT.1976.1055515
MacWilliams, F. J. & Seery, J, The weight distributions of some minimal cyclic codes, IEEE Trans. Inform. Theory, IT-27(1981), pp. 796-806. DOI: https://doi.org/10.1109/TIT.1981.1056420
MacWilliams, F. J., & Sloane, N. J. A, The Theory of Error-Correcting Codes, New York North Holland, 1978.
McEliece, R. J., & Rumsey, H. Jr, Euler products, cyclotomy, and coding, J. Number Theory, 4(1972), 302-311. DOI: https://doi.org/10.1016/0022-314X(72)90057-1
Moisio, M. J., & Vnen, K. O, Two recursive algorithms for computing the weight distribution of certain irreducible cyclic codes, IEEE Trans. Inf. Theory, 45(3)(1979), pp. 1244-1249. DOI: https://doi.org/10.1109/18.761277
Niederreiter, H, Weights of cyclic codes, Inform. Contr., 34(2)(1977), pp. 130-140. DOI: https://doi.org/10.1016/S0019-9958(77)80009-0
Schmidt, B., & White, C, All two-weight irreducible cyclic codes, Finite Fields Appl., 8(1)(2002), pp. 1-17. DOI: https://doi.org/10.1006/ffta.2000.0293
Segal, R., & Ward, R. L, Weight distributions of some irreducible cyclic codes, Math. Comput., 46(173)(1986), pp. 341-254. DOI: https://doi.org/10.1090/S0025-5718-1986-0815855-7
Vlugt, M. V. D, On the weight hierarchy of irreducible cyclic codes, J. Comb. Theory Ser. A, 71(1)(1995), pp. 159-167. DOI: https://doi.org/10.1016/0097-3165(95)90023-3
Wolf, J. K., Michelson, A. M., & Levesque, A. H, On the probability of undetected error for linear block codes, IEEE Trans. Commun., COM-30(1982), pp. 317-324. DOI: https://doi.org/10.1109/TCOM.1982.1095473
- NA
Similar Articles
- J. Rashidinia, M. Nabati, Sinc-collocation solution for nonlinear two-point boundary value problems arising in chemical reactor theory , Malaya Journal of Matematik: Vol. 1 No. 04 (2013): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2013 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.