Hypersphere and the fourth Laplace-Beltrami operator in 4-space
Downloads
DOI:
https://doi.org/10.26637/mjm1101/001Abstract
We consider hypersphere \(\mathbf{x}(u,v,w)\) in the four dimensional Euclidean space \({\mathbb{E}}^{4}\). We compute the fourth Laplace-Beltrami operator the hypersphere satisfying \(\Delta ^{IV}\mathbf{x=}\mathcal{A} \mathbf{x}\), where \(\mathcal{A}\in Mat\left( 4,4\right)\).
Keywords:
Four space, Euclidean space, the fourth Laplace-Beltrami operator, hypersphere, Gauss map, curvaturesMathematics Subject Classification:
53A07, 53C42- Pages: 1-10
- Date Published: 01-01-2023
- Vol. 11 No. 01 (2023): Malaya Journal of Matematik (MJM)
AliAs, L.J., GÜRBÜz, N.: An extension of Takashi theorem for the linearized operators of the highest order mean curvatures, Geom. Dedicata, 121(2006), 113-127.
Arslan, K., Bayram, B.K., Bulca, B., Kim, Y.H., Murathan, C., ÖztÜrk, G.: Vranceanu surface in $mathbb{E}^4$ with pointwise 1-type Gauss map, Indian J. Pure Appl. Math., 42(1)(2011), 41-51.
Arslan, K., Bayram, B.K., Bulca, B., ÖztÜrk, G.: Generalized rotation surfaces in $mathbb{E}^4$, Results in Math., 61(3)(2012), 315-327.
Arslan, K., Milousheva, V.: Meridian surfaces of elliptic or hyperbolic type with pointwise 1-type Gauss map in Minkowski 4-space, Taiwanese J. Math., 20(2)(2016), 311-332.
Arvanitoyeorgos, A., Kaimakamis, G., Magid, M.: Lorentz hypersurfaces in $mathbb{E}_1^4$ satisfying $Delta H=alpha H$, Illinois J. Math., 53(2)(2009), 581-590.
Barros, M., Chen, B.Y.: Stationary 2-type surfaces in a hypersphere, J. Math. Soc. Japan, 39(4)(1987), $627-648$.
Barros, M., Garay, O.J.: 2-type surfaces in $S^3$, Geom. Dedicata, 24(3)(1987), 329-336.
Bektaş, B.; Canfes, E.Ö; Dursun, U.: Classification of surfaces in a pseudo-sphere with 2-type pseudospherical Gauss map, Math. Nachr., 290(16)(2017), 2512-2523.
Chen, B.Y.: On submanifolds of finite type, Soochow J. Math., 9(1983), 65-81.
Chen, B.Y.: Total Mean Curvature and Submanifolds of Finite Type, World Scientific, Singapore, 1984.
ChEn, B.Y.: Finite Type Submanifolds and Generalizations, University of Rome, 1985.
Chen, B.Y.: Finite type submanifolds in pseudo-Euclidean spaces and applications, Kodai Math. J., 8(3)(1985), 358-374.
Chen, B.Y., Piccinni, P.: Submanifolds with finite type Gauss map, Bull. Austral. Math. Soc., 35(1987), $161-186$.
Cheng, Q.M., WAn, Q.R.: Complete hypersurfaces of $mathbb{R}^4$ with constant mean curvature, Monatsh. Math., 118(1994), 171-204.
Chern, S.S., Do Carmo, M., Kobayashi, S.: Minimal Submanifolds of a Sphere with Second Fundamental Form of Constant Length, Functional Analysis and Related Fields, Springer, Berlin, 1970.
Cheng, S.Y., Yau, S.T.: Hypersurfaces with constant scalar curvature, Math. Ann., 225(1977), $195-204$.
Choi, M., Kıм, Y.H.: Characterization of the helicoid as ruled surfaces with pointwise 1-type Gauss map, Bull. Korean Math. Soc., 38(2001), 753-761.
Dillen, F., Pas, J., Verstraelen, L.: On surfaces of finite type in Euclidean 3-space, Kodai Math. J., 13(1990), 10-21.
Do Carmo, M., Dajczer, M.: Rotation Hypersurfaces in Spaces of Constant Curvature, Trans. Amer. Math. Soc., 277(1983), 685-709.
Dursun, U.: Hypersurfaces with pointwise 1-type Gauss map, Taiwanese J. Math., 11(5)(2007), 14071416.
Dursun, U., Turgay, N.C.: Space-like surfaces in Minkowski space $mathbb{E}_1^4$ with pointwise 1-type Gauss map, Ukrainian Math. J., 71(1)(2019), 64-80.
Ferrandez, A., Garay, O.J., Lucas, P.: On a certain class of conformally at Euclidean hypersurfaces. In Global Analysis and Global Differential Geometry; Springer: Berlin, Germany 48-54, 1990.
Ganchev, G., Milousheva, V.: General rotational surfaces in the 4-dimensional Minkowski space, Turkish J. Math., 38(2014), 883-895.
Garay, O.J.: On a certain class of finite type surfaces of revolution, Kodai Math. J., 11(1988), 25-31.
Garay, O.J.: An extension of Takahashi’s theorem, Geom. Dedicata, 34(1990), 105-112.
GÜLER, E.: Fundamental form IV and curvature formulas of the hypersphere, Malaya J. Mat., 8(4)(2020), 2008-2011.
GüLER, E.: Rotational hypersurfaces satisfying $Delta^I R=A R$ in the four-dimensional Euclidean space, $J$. Polytech., 24(2)(2021), 517-520.
GÜler, E., HacisalihoĞlu, H.H., KIM, Y.H.: The Gauss map and the third Laplace-Beltrami operator of the rotational hypersurface in 4-space, Symmetry, 10(9)(2018), 1-12.
Güler, E., MAgId, M., YAYli, Y.: Laplace-Beltrami operator of a helicoidal hypersurface in four-space, $J$. Geom. Symmetry Phys., 41(2016), 77-95.
GÜler, E., Turgay, N.C.: Cheng-Yau operator and Gauss map of rotational hypersurfaces in 4-space, Mediterr. J. Math., 16(3)(2019), 1-16.
Hasanis, Th., Vlachos, Th.: Hypersurfaces in $mathbb{E}^4$ with harmonic mean curvature vector field, Math. Nachr., 172(1995), 145-169.
Kahraman Aksoyak, F., Yayli, Y.: Flat rotational surfaces with pointwise 1-type Gauss map in $mathbb{E}^4$, Honam Math. J., 38(2)(2016), 305-316.
Kahraman Aksoyak, F., Yayli, Y.: General rotational surfaces with pointwise 1-type Gauss map in pseudo-Euclidean space $mathbb{E}_2^4$, Indian J. Pure Appl. Math., 46(1)(2015), 107-118.
KIm, D.S., Kim, J.R., KIm, Y.H.: Cheng-Yau operator and Gauss map of surfaces of revolution, Bull. Malays. Math. Sci. Soc., 39(4)(2016), 1319-1327.
Kim, Y.H., Turgay, N.C.: Surfaces in $mathbb{E}^4$ with $L_1$-pointwise 1-type Gauss map, Bull. Korean Math. Soc., 50(3)(2013), 935-949.
KüHnel, W.: Differential Geometry, Curves-surfaces-manifolds, Third ed. Translated from the 2013 German ed. AMS, Providence, RI, 2015.
Lawson, H.B.: Lectures on Minimal Submanifolds, 2nd ed. Mathematics Lecture Series 9; Publish or Perish, Inc., Wilmington, DE, USA, 1980.
LeVi-Civita, T.: Famiglie di superficie isoparametriche nellordinario spacio euclideo, Rend. Acad. Lincei., 26(1937), 355-362.
Moore, C.: Surfaces of rotation in a space of four dimensions, Ann. Math., 21(1919), 81-93.
Moore, C.: Rotation surfaces of constant curvature in space of four dimensions, Bull. Amer. Math. Soc., 26(1920), 454-460.
Овата, M.: Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Jpn., 14(1962), 333-340.
Senoussi, B., Bekkar, M.: Helicoidal surfaces with $Delta^J r=A r$ in 3-dimensional Euclidean space, Stud. Univ. Babeş-Bolyai Math., 60(3)(2015), 437-448.
Stamatakis, S., Zoubi, H.: Surfaces of revolution satisfying $Delta^{I I I} x=A x, J$. Geom. Graph, 14(2)(2010), $181-186$.
TAKAhAShi, T.: Minimal immersions of Riemannian manifolds, J. Math. Soc. Jpn., 18(1966), 380-385.
Turgay, N.C.: Some classifications of Lorentzian surfaces with finite type Gauss map in the Minkowski 4-space, J. Aust. Math. Soc., 99(3)(2015), 415-427.
- NA
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Erhan Güler
This work is licensed under a Creative Commons Attribution 4.0 International License.