Variational homotopy perturbation method for the approximate solution of the foam drainage equation with time and space fractional derivatives

Downloads

DOI:

https://doi.org/10.26637/mjm104/019

Abstract

In this paper, variational homotopy perturbation method (VHPM) is applied for solving the foam drainage equation with time and space-fractional derivatives. Numerical solutions are obtained for various values of the time and space-order derivative in (0,1]. For the first-order time and space derivative, compared with the exact solution, the result showed that the proposed method could be used as an alternative method for obtaining an analytic and approximate solution for different types of differential equations.

Keywords:

Caputo fractional derivative, variational homotopy perturbation method, foam drainage equation, fractional differential equations

Mathematics Subject Classification:

34A08, 65L05, 34B15, 74H15
  • A. Bouhassoun Laboratory (LAMAP), Faculty of exact and applied sciences, University of Oran, P.O. Box, 1524, Oran, Algeria.
  • M. Hamdi Cherif Laboratory (LAMAP), Faculty of exact and applied sciences, University of Oran, P.O. Box, 1524, Oran, Algeria.
  • M. Zellal Laboratory (LAMAP), Faculty of exact and applied sciences, University of Oran, P.O. Box, 1524, Oran, Algeria.
  • Pages: 163-170
  • Date Published: 01-10-2013
  • Vol. 1 No. 04 (2013): Malaya Journal of Matematik (MJM)

G. Adomian, A review of the decomposition method in applied mathematics, J. Math. Anal. Appl., Vol. 135, (1988), 501–44 . DOI: https://doi.org/10.1016/0022-247X(88)90170-9

G. Adomian, Solving frontier problems of physics: The decomposition method, Kluwer Academic Press, Boston, 1994. DOI: https://doi.org/10.1007/978-94-015-8289-6

J. Biazar, H. Ghazvini, Convergence of the homotopy perturbation method for partial differential equations, Nonlinear Anal. Real World Appl., 10, (2009), 2633–2640. DOI: https://doi.org/10.1016/j.nonrwa.2008.07.002

J.J. Bikerman. Foams. Springer, New York, 1973 DOI: https://doi.org/10.1007/978-3-642-86734-7

Z. Dahmani, M. M. Mesmoudi , R. Bebbouchi, The Foam Drainage Equation with Time- and Space-Fractional Derivatives Solved by The Adomian Method, Electron. J. Qual. Theory Differ. Equ., No. 30, (2008), 1–10. DOI: https://doi.org/10.14232/ejqtde.2008.1.30

Z. Dahmani, A. Anber, The Variational Iteration Method for Solving the Fractional Foam Drainage Equation, Int. J. Nonlinear Sci., Vol. 10, No.1, (2010), 39–45.

J. H. He, Variational iteration method – a kind of nonlinear analytical technique: someexamples, Internat. J. Nonlinear Mech., Vol. 34, (1999), 699-708. DOI: https://doi.org/10.1016/S0020-7462(98)00048-1

J. H. He, Homotopy perturbation techique, Comput. Methods Appl. Mech. Eng., Vol. 178, (1999), 257–62. DOI: https://doi.org/10.1016/S0045-7825(99)00018-3

Y. Liu, Variational Homotopy Perturbation Method for Solving Fractional Initial BoundaryValue Problems, Abstr. Appl. Anal. Art. ID 727031 (2012). DOI: https://doi.org/10.1155/2012/727031

M. Matinfar, M. Mahdavi, Z. Raeisi, the variational homotopy perturbation method for analytic treatment for linear and non linear ordinary differntial equations, J. Appl. Math. & Informatics, Vol. 28, No. 3 – 4, (2010), 845–862 .

M. Matinfar, Z. Raeisi, Variational Homotopy Perturbation Method for Linear Fractional Partial Differential Equations, Int. J. Nonlinear Sci., Vol. 13, No. 4, (2012), 463–471.

S. Momani, Z. Odibat, Homotopy perturbation method for nonlinear partial differential equations of fractional order, Physics Letters A, 365, (2007), 345–350. DOI: https://doi.org/10.1016/j.physleta.2007.01.046

I. Podlubny, Fractional differential equations, Academic press, New York. 1999.

P. Stevenson, G. J. Jameson. Modeling continuous foam fractionation with reux. Chem. Eng. Process., 39: 590 (2007).

G. Verbist, D. Weaire, A.M. Kraynik. The foam drainage equation, J. Phys. Condens. Matter, 8, (1996), 3715–3731 . DOI: https://doi.org/10.1088/0953-8984/8/21/002

A. Wazwaz, The variational iteration method for analytic treatment for linear and nonlinear ODEs, App. Math. Comp., 212, No. 1, (2009), 120–134. DOI: https://doi.org/10.1016/j.amc.2009.02.003

D. Weaire, S. Hutzler, The Physics of Foam. Oxford University Press, New York, 2000. DOI: https://doi.org/10.1093/oso/9780198505518.001.0001

A. Yıldırım and H. Ko¸ cak, Rational approximation solution of the foam drainage equation with time- and space-fractional derivatives, Internat. J. Numer. Methods Heat Fluid Flow, Vol. 22 No. 4, (2012), 512–525. DOI: https://doi.org/10.1108/09615531211215792

  • NA

Metrics

Metrics Loading ...

Published

01-10-2013

How to Cite

A. Bouhassoun, M. Hamdi Cherif, and M. Zellal. “Variational Homotopy Perturbation Method for the Approximate Solution of the Foam Drainage Equation With Time and Space Fractional Derivatives”. Malaya Journal of Matematik, vol. 1, no. 04, Oct. 2013, pp. 163-70, doi:10.26637/mjm104/019.