Robinson-Schensted correspondence for party algebras

Downloads

DOI:

https://doi.org/10.26637/mjm201/001

Abstract

In this paper, we construct a bijective proof of the identity nk=[˜λ]Λknf[˜λ]m[˜λ]k, where m[˜λ]k is the multiplicity of the irreducible representation of ZrSn module indexed by [˜λ]Λkn,f[˜λ] is the degree of the corresponding representation indexed by [˜λ]Λkn and Λkn={[˜λ]n|ki=1i|λ(i)∣=k}. We give the proof of Robinson-Schensted correspondence for the party algebras which gives the bijective proof of party diagrams and the pairs of vacillating tableaux.

Keywords:

Partition, Bratteli diagram, Robinson-Schensted correspondence

Mathematics Subject Classification:

05E10, 05A05, 20C99
  • A. Vidhya Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chennai-600 005, Tamil Nadu, India.
  • A. Tamilselvi Anna University, MIT Campus, Chennai - 600 044, Tamil Nadu, India.
  • Pages: 1-9
  • Date Published: 01-01-2014
  • Vol. 2 No. 01 (2014): Malaya Journal of Matematik (MJM)

. S. Ariki and K. Koike, A Hecke Algebra of $(mathbb{Z} / r mathbb{Z}) imath_k$ and Construction of Its Irreducible Representations, Advances in Mathematics, 106(1994), 216-243. DOI: https://doi.org/10.1006/aima.1994.1057

T. Halverson and A. Ram, Partition algebras, European Journal of Combinatorics, 26(2005), 869-921. DOI: https://doi.org/10.1016/j.ejc.2004.06.005

T. Halverson and T. Lewandowski, RSK insertion for set partitions and diagram algebras, Electronic J.Combinatorics, 11(2)(2004-2005) R24. DOI: https://doi.org/10.37236/1881

G. James and A. Kerber, The Representation Theory of the Symmetric Group, Encyclopedia of Mathematics and its Applications, Addison Wesley Publishing Company, 1981.

M.Kosuda, Characterization for the party algebras, Ryukyu Math.J., 13(2000), 7-22.

M. Kosuda, Irreducible representations of the party algebras, Osaka J.Math., 43(2)(2006), 431-474.

B.E. Sagan, The Symmetric Group. Representations, Combinatorial Algorithms, and Symmetric Functions, Second edition. Graduate Texts in Mathematics, 203. Springer-Verlag, New York, 2001. DOI: https://doi.org/10.1007/978-1-4757-6804-6_3

K.Tanabe, On thecentralizeralgebraofthe unitary reflectiongroupG(m, p, n), NagoyaMath.J., 148(1997), 113 - 126. DOI: https://doi.org/10.1017/S0027763000006450

  • NA

Metrics

PDF views
71
Jan 2014Jul 2014Jan 2015Jul 2015Jan 2016Jul 2016Jan 2017Jul 2017Jan 2018Jul 2018Jan 2019Jul 2019Jan 2020Jul 2020Jan 2021Jul 2021Jan 2022Jul 2022Jan 2023Jul 2023Jan 2024Jul 2024Jan 2025Jul 2025Jan 20269
|

Published

01-01-2014

How to Cite

A. Vidhya, and A. Tamilselvi. “Robinson-Schensted Correspondence for Party Algebras”. Malaya Journal of Matematik, vol. 2, no. 01, Jan. 2014, pp. 1-9, doi:10.26637/mjm201/001.