Robinson-Schensted correspondence for party algebras

Downloads

DOI:

https://doi.org/10.26637/mjm201/001

Abstract

In this paper, we construct a bijective proof of the identity \(n^k=\sum_{[\tilde{\lambda}] \in \Lambda_n^k} f^{[\tilde{\lambda}]} m_k^{[\tilde{\lambda}]}\), where \(m_k^{[\tilde{\lambda}]}\) is the multiplicity of the irreducible representation of \(\mathbb{Z}_r\left\langle S_n\right.\) module indexed by \([\tilde{\lambda}] \in \Lambda_n^k, f^{[\tilde{\lambda}]}\) is the degree of the corresponding representation indexed by \([\tilde{\lambda}] \in \Lambda_n^k\) and \(\Lambda_n^k=\left\{[\tilde{\lambda}] \vdash n\left|\sum_{i=1}^k i\right| \lambda^{(i)} \mid=k\right\}\). We give the proof of Robinson-Schensted correspondence for the party algebras which gives the bijective proof of party diagrams and the pairs of vacillating tableaux.

Keywords:

Partition, Bratteli diagram, Robinson-Schensted correspondence

Mathematics Subject Classification:

05E10, 05A05, 20C99
  • A. Vidhya Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chennai-600 005, Tamil Nadu, India.
  • A. Tamilselvi Anna University, MIT Campus, Chennai - 600 044, Tamil Nadu, India.
  • Pages: 1-9
  • Date Published: 01-01-2014
  • Vol. 2 No. 01 (2014): Malaya Journal of Matematik (MJM)

. S. Ariki and K. Koike, A Hecke Algebra of $(mathbb{Z} / r mathbb{Z}) imath_k$ and Construction of Its Irreducible Representations, Advances in Mathematics, 106(1994), 216-243. DOI: https://doi.org/10.1006/aima.1994.1057

T. Halverson and A. Ram, Partition algebras, European Journal of Combinatorics, 26(2005), 869-921. DOI: https://doi.org/10.1016/j.ejc.2004.06.005

T. Halverson and T. Lewandowski, RSK insertion for set partitions and diagram algebras, Electronic J.Combinatorics, 11(2)(2004-2005) R24. DOI: https://doi.org/10.37236/1881

G. James and A. Kerber, The Representation Theory of the Symmetric Group, Encyclopedia of Mathematics and its Applications, Addison Wesley Publishing Company, 1981.

M.Kosuda, Characterization for the party algebras, Ryukyu Math.J., 13(2000), 7-22.

M. Kosuda, Irreducible representations of the party algebras, Osaka J.Math., 43(2)(2006), 431-474.

B.E. Sagan, The Symmetric Group. Representations, Combinatorial Algorithms, and Symmetric Functions, Second edition. Graduate Texts in Mathematics, 203. Springer-Verlag, New York, 2001. DOI: https://doi.org/10.1007/978-1-4757-6804-6_3

K.Tanabe, On thecentralizeralgebraofthe unitary reflectiongroupG(m, p, n), NagoyaMath.J., 148(1997), 113 - 126. DOI: https://doi.org/10.1017/S0027763000006450

  • NA

Metrics

Metrics Loading ...

Published

01-01-2014

How to Cite

A. Vidhya, and A. Tamilselvi. “Robinson-Schensted Correspondence for Party Algebras”. Malaya Journal of Matematik, vol. 2, no. 01, Jan. 2014, pp. 1-9, doi:10.26637/mjm201/001.