Robinson-Schensted correspondence for party algebras
Downloads
DOI:
https://doi.org/10.26637/mjm201/001Abstract
In this paper, we construct a bijective proof of the identity \(n^k=\sum_{[\tilde{\lambda}] \in \Lambda_n^k} f^{[\tilde{\lambda}]} m_k^{[\tilde{\lambda}]}\), where \(m_k^{[\tilde{\lambda}]}\) is the multiplicity of the irreducible representation of \(\mathbb{Z}_r\left\langle S_n\right.\) module indexed by \([\tilde{\lambda}] \in \Lambda_n^k, f^{[\tilde{\lambda}]}\) is the degree of the corresponding representation indexed by \([\tilde{\lambda}] \in \Lambda_n^k\) and \(\Lambda_n^k=\left\{[\tilde{\lambda}] \vdash n\left|\sum_{i=1}^k i\right| \lambda^{(i)} \mid=k\right\}\). We give the proof of Robinson-Schensted correspondence for the party algebras which gives the bijective proof of party diagrams and the pairs of vacillating tableaux.
Keywords:
Partition, Bratteli diagram, Robinson-Schensted correspondenceMathematics Subject Classification:
05E10, 05A05, 20C99- Pages: 1-9
- Date Published: 01-01-2014
- Vol. 2 No. 01 (2014): Malaya Journal of Matematik (MJM)
. S. Ariki and K. Koike, A Hecke Algebra of $(mathbb{Z} / r mathbb{Z}) imath_k$ and Construction of Its Irreducible Representations, Advances in Mathematics, 106(1994), 216-243. DOI: https://doi.org/10.1006/aima.1994.1057
T. Halverson and A. Ram, Partition algebras, European Journal of Combinatorics, 26(2005), 869-921. DOI: https://doi.org/10.1016/j.ejc.2004.06.005
T. Halverson and T. Lewandowski, RSK insertion for set partitions and diagram algebras, Electronic J.Combinatorics, 11(2)(2004-2005) R24. DOI: https://doi.org/10.37236/1881
G. James and A. Kerber, The Representation Theory of the Symmetric Group, Encyclopedia of Mathematics and its Applications, Addison Wesley Publishing Company, 1981.
M.Kosuda, Characterization for the party algebras, Ryukyu Math.J., 13(2000), 7-22.
M. Kosuda, Irreducible representations of the party algebras, Osaka J.Math., 43(2)(2006), 431-474.
B.E. Sagan, The Symmetric Group. Representations, Combinatorial Algorithms, and Symmetric Functions, Second edition. Graduate Texts in Mathematics, 203. Springer-Verlag, New York, 2001. DOI: https://doi.org/10.1007/978-1-4757-6804-6_3
K.Tanabe, On thecentralizeralgebraofthe unitary reflectiongroupG(m, p, n), NagoyaMath.J., 148(1997), 113 - 126. DOI: https://doi.org/10.1017/S0027763000006450
- NA
Similar Articles
- A. Bouhassoun, M. Hamdi Cherif, M. Zellal, Variational homotopy perturbation method for the approximate solution of the foam drainage equation with time and space fractional derivatives , Malaya Journal of Matematik: Vol. 1 No. 04 (2013): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.