Curvature tensor of almost \(C(\lambda)\) manifolds
Downloads
DOI:
https://doi.org/10.26637/mjm201/002Abstract
The present paper deals with certain characterization of curvature conditions on Pseudo-projective and Quasi-conformal curvature tensor on almost \(C(\lambda)\) manifolds. The main object of the paper is to study the flatness of the Pseudo-projective, Quasi-conformal curvature tensor, \(\xi\)-Pseudo-projective, \(\xi\)-Quasi-conformal curvature tensor on almost \(C(\lambda)\) manifolds.
Keywords:
Pseudo-projective curvature tensor, Quasi-conformal curvature tensor, ξ- Pseudo-projectively flat, ξ-Quasi-conformally flat, η-Einstein, Almost \(C(\lambda)\) manifoldsMathematics Subject Classification:
53C15, 53C20, 53C21, 53C25, 53D10- Pages: 10-15
- Date Published: 01-01-2014
- Vol. 2 No. 01 (2014): Malaya Journal of Matematik (MJM)
K. Amur and Y.B. Maralabhavi, On quasi-conformally flat spaces, Tensor, N.S., 31(1977), 194-198.
Ali Akbar, Some Results on Almost C(λ) manifolds, International Journal of Mathematical Sciences Engineering and Applications (IJMSEA), 7(1)(2013), 255-260.
Ali Akbar and Avijit Sarkar, On the Conharmonic and Concircular curvature tensors of almost C(λ) Manifolds, International Journal of Advanced Mathematical Sciences, 1(3)(2013), 134-138. DOI: https://doi.org/10.14419/ijams.v1i3.981
Bhagawat Prasad, On pseudo projective curvature tensor on a Riemannian manifold, Bull. Cal. Math. Soc., 94(3)(2002), 163-166.
D.E. Blair, Contact manifolds in Riemannian Geometry, Lecture Notes in Mathematics, 509, Springer-Verlag, Berlin, 1976. DOI: https://doi.org/10.1007/BFb0079307
D. Janssen and L. Vanhecke, Almost contact structures and curvature tensors, Kodai Math. J., 4(1981), 1-27. DOI: https://doi.org/10.2996/kmj/1138036310
G. Zhen, J. L. Cabrerizo, L. M. Fernandez and M. Fernandez, On ξ-conformally flat contact metric manifolds, Indian J. Pure Appl. Math., 28(1997), 725-734.
S.V. Kharitonova, Almost C(λ) manifolds, Journal of Mathematical Sciences, 177(2011), 742-747. DOI: https://doi.org/10.1007/s10958-011-0504-6
Uday chand De, Ahmet Yildiz, Mine Turan and Bilal E. Acet, 3-Dimensional Quasi-Sasakian Manifolds with semi- symmetric non-metric connection, I Hacettepe Journal of Mathematics and Statistics, 41(1)(2012), 127-137.
De U.C. and Shaikh A. A, Differential Geometry of Manifolds, J. Narosa Publishing House, New Delhi, 2007
Z . Olszak and R. Rosca, Normal locally confomal almost cosymplectic manifolds, Publ. Math. Debrecen, 39(1991), 315-323. DOI: https://doi.org/10.5486/PMD.1991.39.3-4.12
K. Yano and M. Kon, Structures on Manifolds, Series in Pure Mathematics, World Scientific Publishing Co., Singapore, 3, (1984). DOI: https://doi.org/10.1142/0067
- NA
Similar Articles
- Venkata Manikanta Batchu, Yudhveer Singh, Vinod Gill, A novel extension of weighted hyper geometric functions and fractional derivative , Malaya Journal of Matematik: Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.