Generalization for character formulas in terms of continued fraction identities

Downloads

DOI:

https://doi.org/10.26637/mjm201/004

Abstract

In recent work, Folsom discussed character formulas for classical mock theta functions of Ramanujan. Here, we suggest representations for character formulas in terms of continued fraction identities or in more precise language, we can say an applications of continued fraction identities to character formulas. As a consequence, we obtain fourteen new results.

Keywords:

Character formulas, continued fractions identities, q-product identities

Mathematics Subject Classification:

11F27, 11F37, 11F50, 17B67, 33D15
  • M.P. Chaudhary nternational Scientific Research and Welfare Organization, New Delhi, India.
  • Pages: 24-34
  • Date Published: 01-01-2014
  • Vol. 2 No. 01 (2014): Malaya Journal of Matematik (MJM)

M.P. Chaudhary, On q-product identities, communicated for publication.

Amanda Folsom, Kac-Wakimoto characters and universal mock theta functions, Trans. Amer. Math. Soc., 363(1)(2011) 439-455. DOI: https://doi.org/10.1090/S0002-9947-2010-05181-5

G.E. Andrews, An introduction to Ramanujan’s Lost notebook, Amer. Math. Monthly, 86(2)(1979) 89-108. DOI: https://doi.org/10.1080/00029890.1979.11994743

G.E. Andrews, Ramanujan’s Lost notebook III. The Rogers-Ramanujan continued fraction, Advances in Mathematics, 41(2)(1981) 186-208. DOI: https://doi.org/10.1016/0001-8708(81)90015-3

R.Y. Denis, On certain q-series and continued fractions, Math. Students, 44(1-4)(1983) 70-76.

  • NA

Metrics

PDF views
64
Jan 2014Jul 2014Jan 2015Jul 2015Jan 2016Jul 2016Jan 2017Jul 2017Jan 2018Jul 2018Jan 2019Jul 2019Jan 2020Jul 2020Jan 2021Jul 2021Jan 2022Jul 2022Jan 2023Jul 2023Jan 2024Jul 2024Jan 2025Jul 2025Jan 20269
|

Published

01-01-2014

How to Cite

M.P. Chaudhary. “Generalization for Character Formulas in Terms of Continued Fraction Identities”. Malaya Journal of Matematik, vol. 2, no. 01, Jan. 2014, pp. 24-34, doi:10.26637/mjm201/004.