Note on nonparametric \(M\)-estimation for spatial regression
Downloads
DOI:
https://doi.org/10.26637/mjm201/005Abstract
In this paper, we investigate a nonparametric robust estimation for spatial regression. More precisely, given a strictly stationary random field \(Z_{\mathbf{i}}=\left(X_{\mathbf{i}}, Y_{\mathbf{i}}\right), \mathbf{i} \in \mathbb{N}^N\), we consider a family of robust nonparametric estimators for a regression function based on the kernel method. We establish a \(p\)-mean consistency results of the kernel estimator under some conditions.
Keywords:
Quadratic error, Nonparametric regression, Spatial process, Robust estimation, \(p\)-mean consistencyMathematics Subject Classification:
26A33, 34A08, 35R12, 47H10- Pages: 35-42
- Date Published: 01-01-2014
- Vol. 2 No. 01 (2014): Malaya Journal of Matematik (MJM)
Anselin, L., Florax, R.J.G.M., (1995). New Directions in Spatial Econometrics. Springer, Berlin. DOI: https://doi.org/10.1007/978-3-642-79877-1
Attouch, M., Laksaci, A., Ould-Sad, E. (2010). Asymptotic normality of a robust estimator of the regression function for functional time series data. J. Korean Stat. Soc. 39, 489-500. DOI: https://doi.org/10.1016/j.jkss.2009.10.007
A. Gheriballa, A. Laksaci, R. Rouane. (2010). Robust nonparametric estimation for spatial regression, J. Stat. Plan. Infer 140, 1656 -1670. DOI: https://doi.org/10.1016/j.jspi.2010.01.042
Azzeddine, N., Laksaci, A., Ould-Sad, E. (2008) On the robust nonparametric regression estimation for functional regressor. Statistics & Probability Letters, 78, 3216-3221. DOI: https://doi.org/10.1016/j.spl.2008.06.018
Banerjee, S., Carlin, B.P. and Gelfand, A.E. (2004). Hierarchical Modeling and Analysis for Spatial Data. Boca Raton, FL: Chapman and Hall/CRC Press. DOI: https://doi.org/10.1201/9780203487808
Biau, G. and Cadre, B. (2004). Nonparametric spatial prediction, Statist. Inference Stoch. processes, 7, 327-349. DOI: https://doi.org/10.1023/B:SISP.0000049116.23705.88
Boente, G., Gonzalez-Manteiga, W., Gonzalez, A., (2009). Robust nonparametric estimation with missing data. J. Statist. Plann. Inference 139, 571-592. DOI: https://doi.org/10.1016/j.jspi.2008.02.019
Boente, G. and Fraiman, R. (1989). Nonparametric regression estimation, Journal of Multivariate Analysis, 29, 180-198. DOI: https://doi.org/10.1016/0047-259X(89)90023-7
Carbon, M., Tran, L. T. and Wu, B. (1997). Kernel density estimation for random fields, Stat. Prob. Lett. 36, 115-125. DOI: https://doi.org/10.1016/S0167-7152(97)00054-0
Carbon, M., Francq, C., Tran, L.T., (2007). Kernel regression estimation for random fields. J. Statist. Plann. Inference 137, 778-798. DOI: https://doi.org/10.1016/j.jspi.2006.06.008
Collomb, G., Härdle, W., (1986). Strong uniform convergence rates in robust nonparametric time series analysis and prediction: Kernel regression estimation from dependent observations. Stochastic Process. Appl. 23, 77-89. DOI: https://doi.org/10.1016/0304-4149(86)90017-7
Cressie, N.A.C., (1991). Statistics for spatial Data, Wiley Series in Probability and Mathematical Statistics. Wiley, New York.
Cressie, N.A.C. and Wikle, C.K. (2011). Statistics for Spatio-Temporal Data. New York: Wiley.
Crambes, C, Delsol, L., Laksaci, A.(2008). Robust nonparametric estimation for functional data. J. Nonparametr. Stat. 20, 573-598. DOI: https://doi.org/10.1080/10485250802331524
Fan, J., Hu, T.C., Truong, Y.K., (1994). Robust nonparametric function estimation. Scand. J. Statist. 21, 433-446.
Gelfand, A.E., Diggle, P., Guttorp, P. and Fuentes, M. (2010). Handbook of Spatial Statistics.Publisher:CRC/Taylor and Francis. DOI: https://doi.org/10.1201/9781420072884
Guyon, X., (1995). Random Fields on a Network-Modeling, Statistics, and Applications. Springer, New York.
J. Gao, Z. Lu, and D. Tjøstheim, (2008). Moment Inequalities for Spatial Processes, Statist. Probab. Lett. 78, 687-697. DOI: https://doi.org/10.1016/j.spl.2007.09.032
Huber, P.J., (1964). Robust estimation of a location parameter. Ann. Math. Statist. 35, 73-101. DOI: https://doi.org/10.1214/aoms/1177703732
Li, J., Tran, L.T., (2009). Nonparametric estimation of conditional expectation. J. Statist. Plann. Inference 139, 164-175. DOI: https://doi.org/10.1016/j.jspi.2008.04.023
Robinson, R., (1984). Robust Nonparametric Autoregression. Lecture Notes in Statistics, vol. 26. Springer, New York, pp. 247-255. DOI: https://doi.org/10.1007/978-1-4615-7821-5_14
Schabenberger, O. and Gotway, C.A. (2004). Statistical Methods for Spatial Data Analysis (Texts in Statistical Science Series). Boca Raton: Chapman and Hall/CRC.
S. A. Ould Abdi, S. Dabo-Niang, A.Diop, and A. Ould Abdi,(2010). Consistency of a Nonparametric Conditional Quantile Estimator for Random Fields. Mathematical Methods of Statistics,19, 1-21. DOI: https://doi.org/10.3103/S1066530710010011
Tran, L. T. (1990). Kernel density estimation on random fields, Journal of Multivariate Analysis, vol. 34, pp. 37-53. DOI: https://doi.org/10.1016/0047-259X(90)90059-Q
- NA
Similar Articles
- Yuji Liu, Shimin Li, Periodic boundary value problems for singular fractional differential equations with impulse effects , Malaya Journal of Matematik: Vol. 3 No. 04 (2015): Malaya Journal of Matematik (MJM)
- A. Anguraj, M. Lathamaheswari, Existence results for fractional differential equations with infinite delay and interval impulsive conditions , Malaya Journal of Matematik: Vol. 2 No. 01 (2014): Malaya Journal of Matematik (MJM)
- Naas Adjimi , Maamar Benbachir, Kaddour Guerbati , Existence results for \(\psi\)-Caputo hybrid fractional integro-differential equations , Malaya Journal of Matematik: Vol. 9 No. 02 (2021): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 MJM

This work is licensed under a Creative Commons Attribution 4.0 International License.