Note on nonparametric \(M\)-estimation for spatial regression

Downloads

DOI:

https://doi.org/10.26637/mjm201/005

Abstract

In this paper, we investigate a nonparametric robust estimation for spatial regression. More precisely, given a strictly stationary random field \(Z_{\mathbf{i}}=\left(X_{\mathbf{i}}, Y_{\mathbf{i}}\right), \mathbf{i} \in \mathbb{N}^N\), we consider a family of robust nonparametric estimators for a regression function based on the kernel method. We establish a \(p\)-mean consistency results of the kernel estimator under some conditions.

Keywords:

Quadratic error, Nonparametric regression, Spatial process, Robust estimation, \(p\)-mean consistency

Mathematics Subject Classification:

26A33, 34A08, 35R12, 47H10
  • Pages: 35-42
  • Date Published: 01-01-2014
  • Vol. 2 No. 01 (2014): Malaya Journal of Matematik (MJM)

Anselin, L., Florax, R.J.G.M., (1995). New Directions in Spatial Econometrics. Springer, Berlin. DOI: https://doi.org/10.1007/978-3-642-79877-1

Attouch, M., Laksaci, A., Ould-Sad, E. (2010). Asymptotic normality of a robust estimator of the regression function for functional time series data. J. Korean Stat. Soc. 39, 489-500. DOI: https://doi.org/10.1016/j.jkss.2009.10.007

A. Gheriballa, A. Laksaci, R. Rouane. (2010). Robust nonparametric estimation for spatial regression, J. Stat. Plan. Infer 140, 1656 -1670. DOI: https://doi.org/10.1016/j.jspi.2010.01.042

Azzeddine, N., Laksaci, A., Ould-Sad, E. (2008) On the robust nonparametric regression estimation for functional regressor. Statistics & Probability Letters, 78, 3216-3221. DOI: https://doi.org/10.1016/j.spl.2008.06.018

Banerjee, S., Carlin, B.P. and Gelfand, A.E. (2004). Hierarchical Modeling and Analysis for Spatial Data. Boca Raton, FL: Chapman and Hall/CRC Press. DOI: https://doi.org/10.1201/9780203487808

Biau, G. and Cadre, B. (2004). Nonparametric spatial prediction, Statist. Inference Stoch. processes, 7, 327-349. DOI: https://doi.org/10.1023/B:SISP.0000049116.23705.88

Boente, G., Gonzalez-Manteiga, W., Gonzalez, A., (2009). Robust nonparametric estimation with missing data. J. Statist. Plann. Inference 139, 571-592. DOI: https://doi.org/10.1016/j.jspi.2008.02.019

Boente, G. and Fraiman, R. (1989). Nonparametric regression estimation, Journal of Multivariate Analysis, 29, 180-198. DOI: https://doi.org/10.1016/0047-259X(89)90023-7

Carbon, M., Tran, L. T. and Wu, B. (1997). Kernel density estimation for random fields, Stat. Prob. Lett. 36, 115-125. DOI: https://doi.org/10.1016/S0167-7152(97)00054-0

Carbon, M., Francq, C., Tran, L.T., (2007). Kernel regression estimation for random fields. J. Statist. Plann. Inference 137, 778-798. DOI: https://doi.org/10.1016/j.jspi.2006.06.008

Collomb, G., Härdle, W., (1986). Strong uniform convergence rates in robust nonparametric time series analysis and prediction: Kernel regression estimation from dependent observations. Stochastic Process. Appl. 23, 77-89. DOI: https://doi.org/10.1016/0304-4149(86)90017-7

Cressie, N.A.C., (1991). Statistics for spatial Data, Wiley Series in Probability and Mathematical Statistics. Wiley, New York.

Cressie, N.A.C. and Wikle, C.K. (2011). Statistics for Spatio-Temporal Data. New York: Wiley.

Crambes, C, Delsol, L., Laksaci, A.(2008). Robust nonparametric estimation for functional data. J. Nonparametr. Stat. 20, 573-598. DOI: https://doi.org/10.1080/10485250802331524

Fan, J., Hu, T.C., Truong, Y.K., (1994). Robust nonparametric function estimation. Scand. J. Statist. 21, 433-446.

Gelfand, A.E., Diggle, P., Guttorp, P. and Fuentes, M. (2010). Handbook of Spatial Statistics.Publisher:CRC/Taylor and Francis. DOI: https://doi.org/10.1201/9781420072884

Guyon, X., (1995). Random Fields on a Network-Modeling, Statistics, and Applications. Springer, New York.

J. Gao, Z. Lu, and D. Tjøstheim, (2008). Moment Inequalities for Spatial Processes, Statist. Probab. Lett. 78, 687-697. DOI: https://doi.org/10.1016/j.spl.2007.09.032

Huber, P.J., (1964). Robust estimation of a location parameter. Ann. Math. Statist. 35, 73-101. DOI: https://doi.org/10.1214/aoms/1177703732

Li, J., Tran, L.T., (2009). Nonparametric estimation of conditional expectation. J. Statist. Plann. Inference 139, 164-175. DOI: https://doi.org/10.1016/j.jspi.2008.04.023

Robinson, R., (1984). Robust Nonparametric Autoregression. Lecture Notes in Statistics, vol. 26. Springer, New York, pp. 247-255. DOI: https://doi.org/10.1007/978-1-4615-7821-5_14

Schabenberger, O. and Gotway, C.A. (2004). Statistical Methods for Spatial Data Analysis (Texts in Statistical Science Series). Boca Raton: Chapman and Hall/CRC.

S. A. Ould Abdi, S. Dabo-Niang, A.Diop, and A. Ould Abdi,(2010). Consistency of a Nonparametric Conditional Quantile Estimator for Random Fields. Mathematical Methods of Statistics,19, 1-21. DOI: https://doi.org/10.3103/S1066530710010011

Tran, L. T. (1990). Kernel density estimation on random fields, Journal of Multivariate Analysis, vol. 34, pp. 37-53. DOI: https://doi.org/10.1016/0047-259X(90)90059-Q

  • NA

Metrics

Metrics Loading ...

Published

01-01-2014

How to Cite

A. Gheriballah, and R. Rouane. “Note on Nonparametric \(M\)-Estimation for Spatial Regression”. Malaya Journal of Matematik, vol. 2, no. 01, Jan. 2014, pp. 35-42, doi:10.26637/mjm201/005.