An application of Lauricella hypergeometric functions to the generalized heat equations

Downloads

DOI:

https://doi.org/10.26637/mjm201/006

Abstract

In the recent paper, we give a formal solution of a certain one dimensional time fractional homogeneous conduction heat equation. This equation and its solution impose a rise to new forms of generalized fractional calculus. The new solution involves the Lauricella hypergeometric function of the third type. This type of functions is utilized to explain the probability of thermal transmission in random media. We introduce the analytic form of the thermal distribution related to such Lauricella function.

Keywords:

Fractional calculus, fractional differential equations, analytic function

Mathematics Subject Classification:

26A33, 34A08
  • Pages: 43-48
  • Date Published: 01-01-2014
  • Vol. 2 No. 01 (2014): Malaya Journal of Matematik (MJM)

Y. Z. Povstenko, Fractional heat conduction equation and assotiated thermal stress, Journal of Thermal Stresses, 28 1, (2004), 83–102. DOI: https://doi.org/10.1080/014957390523741

Y. Z. Povstenko, Fundamental solutions to central symmetric problems for fractional heat conduction equation and associated thermal stresses, Journal of Thermal Stresses, 31 (2) (2007), 127–148. DOI: https://doi.org/10.1080/01495730701738306

Y. Z. Povstenko, Theory of thermoelasticity based on the space-time-fractional heat conduction equation, Phys. Scr. (2009) 014017 doi:10.1088/0031-8949/2009/T136/014017. DOI: https://doi.org/10.1088/0031-8949/2009/T136/014017

Y. Z. Povstenko, Fractional radial heat conduction in an infinite medium with a cylindrical cavity and associated thermal stresses, Mechanics Research Communications, 37 (4)( 2010), 436–440. DOI: https://doi.org/10.1016/j.mechrescom.2010.04.006

Y. Z. Povstenko, Fundamental solutions to the central symmetric space-time fractional heat conduction equation and associated thermal stresses, Advances in the Theory and Applications of Non-integer Order Systems Lecture Notes in Electrical Engineering 257(2013), 123–132. DOI: https://doi.org/10.1007/978-3-319-00933-9_10

Wang Qing-Li, He Ji-Huan, Li Zheng-Biao, Fractional model for heat conduction in polar bear hairs, Thermal Science, 16 (2) (2012), 339–342. DOI: https://doi.org/10.2298/TSCI110503070W

Li Zheng-Biao, Zhu Wei-Hong, He Ji-Huan, Exact solutions of time-fractional heat conduction equation by the fractional complex transform, Thermal Science, 16 (2) (2012), 335–338. DOI: https://doi.org/10.2298/TSCI110503069L

Xiao-Jun Yang, D. Baleanu, Fractal heat conduction problem solved by local fractional variational iteration method, Thermal Science, 17(2)(2013), 625–628. DOI: https://doi.org/10.2298/TSCI121124216Y

H.Sherief, A.M.AbdEl-Latief, Effect of variable thermal conductivity on a half-space under the fractional order theory of thermoelasticity, International Journal of Mechanical Sciences, 2013, In Press. DOI: https://doi.org/10.1016/j.ijmecsci.2013.05.016

I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.

G. Casasanta, D. Ciani, R. Garra, Non-exponential extinction of radiation by fractional calculus modelling, Journal of Quantitative Spectroscopy & Radiative Transfer, 113 (2012), 194–197. DOI: https://doi.org/10.1016/j.jqsrt.2011.10.003

A. Freed, K. Diethelm, and Yu. Luchko, Fractional-order viscoelasticity (FOV): constitutive development using the fractional calculus, First Annual Report NASA/TM-2002-211914, Gleen Research Center, 2002.

R. Gorenflo, J. Loutchko, Yu. Luchko, Computation of the Mittag-Leffler function E α,β (z) and its derivative, Fractional Calculus & Applied Analysis, 5(4)(2002), 491–518.

I. Podlubny, Mittag-Leffler function, The MATLAB routine, http://www.mathworks.com/ matlabcentral/fileexchange.

H. J. Seybold, R. Hilfer, Numerical results for the generalized Mittag-Leffler function, Fractional Calculus & Applied Analysis, 8 (2)( 2005), 127–139.

  • NA

Metrics

Metrics Loading ...

Published

01-01-2014

How to Cite

Rabha W. Ibrahim. “An Application of Lauricella Hypergeometric Functions to the Generalized Heat Equations”. Malaya Journal of Matematik, vol. 2, no. 01, Jan. 2014, pp. 43-48, doi:10.26637/mjm201/006.